5 research outputs found

    The Extracellular Matrix of the Lung: The Forgotten Friend!

    No full text
    The extracellular matrix represents the three-dimensional scaffold of the alveolar wall, which is composed of a layer of epithelial and endothelial cells, their basement membrane, and a thin layer of interstitial space lying between the capillary endothelium and the alveolar epithelium [1]. In the segment where the epithelial and endothelial basement membranes are not fused, the interstitium is composed of cells, a macromolecular fibrous component, and the fluid phase of the extracellular matrix, functioning as a three dimensional mechanical scaffold characterized by a fibrous mesh consisting mainly of collagen types I and III, which provides tensile strength, and elastin conveying an elastic recoil [2, 3]. The three-dimensional fiber mesh is filled with other macromolecules, mainly glycosaminoglycans (GAGs), which are the major components of the non-fibrillar compartment of the interstitium [4]. In the lung, the extracellular matrix plays several roles, providing: a) mechanical ten sile and compressive strength and elasticity; b) a low mechanical tissue compliance, thus contributing to the maintenance of normal interstitial fluid dynamics [5]; c) low resistive pathway for effective gas exchange [2]; d) control of cell behavior by binding of growth factors, chemokines, cytokines, and interaction with cell-surface receptors [6]

    Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ): Rationale and Study Design of the Largest Global Prospective Cohort Study of Clinical High Risk for Psychosis.

    No full text
    This article describes the rationale, aims, and methodology of the Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ). This is the largest international collaboration to date that will develop algorithms to predict trajectories and outcomes of individuals at clinical high risk (CHR) for psychosis and to advance the development and use of novel pharmacological interventions for CHR individuals. We present a description of the participating research networks and the data processing analysis and coordination center, their processes for data harmonization across 43 sites from 13 participating countries (recruitment across North America, Australia, Europe, Asia, and South America), data flow and quality assessment processes, data analyses, and the transfer of data to the National Institute of Mental Health (NIMH) Data Archive (NDA) for use by the research community. In an expected sample of approximately 2000 CHR individuals and 640 matched healthy controls, AMP SCZ will collect clinical, environmental, and cognitive data along with multimodal biomarkers, including neuroimaging, electrophysiology, fluid biospecimens, speech and facial expression samples, novel measures derived from digital health technologies including smartphone-based daily surveys, and passive sensing as well as actigraphy. The study will investigate a range of clinical outcomes over a 2-year period, including transition to psychosis, remission or persistence of CHR status, attenuated positive symptoms, persistent negative symptoms, mood and anxiety symptoms, and psychosocial functioning. The global reach of AMP SCZ and its harmonized innovative methods promise to catalyze the development of new treatments to address critical unmet clinical and public health needs in CHR individuals

    Depigmentation and Anti-aging Treatment by Natural Molecules

    No full text
    corecore