2,966 research outputs found

    Calcium intake from different food sources in Italian women without and with non-previously diagnosed osteoporosis

    Get PDF
    An adequate calcium and vitamin D intake may play a role in preventing osteoporosis, but the contribution of the different food sources of calcium with regards to the risk of osteoporosis been barely explored. This observational study evaluated the calcium intake through a food frequency questionnaire in 126 adult women with not previously diagnosed osteoporosis undergoing Dual-energy X-ray Absorptiometry (DXA) to screen for osteoporosis, and to correlate the calcium intake with parameters of bone density, measured by DXA. Total daily calcium intake and daily intake from food were similar among women found to have osteoporosis, osteopenia or normal condition. The main food source was milk and dairy products, while calcium supplementation was consumed by only 14% of subjects, irrespectively from osteoporosis conditions. DXA parameters were not significantly correlated with total daily calcium intake and calcium from food. The present study highlighted no qualitative and quantitative differences in the consumption of food groups contributing to calcium intakes in women with and without osteoporosis

    Scanning Probe Microscopy for polymer film characterization in food packaging

    Get PDF
    Scanning probe microscopy (SPM) is a branch of microscopy allowing characterization of surfaces at the micro-scale by means of a physical probe (with a size of a few microns) raster scanning the sample. SPMs monitor the interaction between such probe and the surface and, depending on the specific physical principles causing the interaction, they allow generation of a quantitative map of topographic properties: geometrical, optical, electrical, magnetic, etc. This is of the greatest interest, in particular whenever functional surfaces have to be characterized in a quantitative manner. The present paper discusses the different applications of Scanning Probe Microscopy techniques for a thorough characterization of polymer surfaces, of specific interest in particular for the case of food packaging applications

    A prototype of fine granularity lead-scintillating fiber calorimeter with imaging read out

    Get PDF
    The construction and tests performed on a smal prototype of lead-scintillating fiber calorimeter instrumented with multianode photomultipliers are reported. The prototype is 15 cm wide, 15 radiation lenghts deep and is made of 200 layers of 50 cm long fibers. One side of the calorimeter has been instrumented with an array of 3 Ă— 5 multianode R8900-M16 Hamamatsu photomultipliers, each segmented with a matrix of 4 Ă— 4 anodes. The read-out granularity is 240 pixels 11 Ă— 11 mm 2 reading about 64 fibers each. They are interfaced to the 6 Ă— 6 mm 2 pixelled photocade with truncated pyramid light guides made of BC-800 plastic, UV transparent. Moreover each photomultiplier provides also the OR information of the last 12 dynodes. This information can be useful for trigger purposes. The response of the individual anodes, their relative gain and cross-talk has been measured with a 404 nm picosecond laser illuminating only a few fibers on the opposite side of the read-out. We also present first results of the calorimeter response to cosmic rays and electron beam data collected at BTF facility in Frascati

    Study of MDT calibration constants using H8 testbeam data of year 2004

    Get PDF
    In year 2004 Atlas performed a long campaign of test beam data taking at the H8 Cern beam. Two sectors of the barrel and endcap regions of the Muon Spectrometer were exposed to the beam and large amount of data were collected in well defined and controlled operating conditions. This allowed a careful study on MDT drift properties. A better understanding of the calibration constants, of their definition and determination and of the criteria for their acceptance has been obtained. Systematic effects and time stability of the constants have also been studied

    Vitamin A, cancer treatment and prevention: The new role of cellular retinol binding proteins

    Get PDF
    Retinol and vitamin A derivatives influence cell differentiation, proliferation, and apoptosis and play an important physiologic role in a wide range of biological processes. Retinol is obtained from foods of animal origin. Retinol derivatives are fundamental for vision, while retinoic acid is essential for skin and bone growth. Intracellular retinoid bioavailability is regulated by the presence of specific cytoplasmic retinol and retinoic acid binding proteins (CRBPs and CRABPs). CRBP-1, the most diffuse CRBP isoform, is a small 15 KDa cytosolic protein widely expressed and evolutionarily conserved in many tissues. CRBP-1 acts as chaperone and regulates the uptake, subsequent esterification, and bioavailability of retinol. CRBP-1 plays a major role in wound healing and arterial tissue remodelling processes. In the last years, the role of CRBP-1-related retinoid signalling during cancer progression became object of several studies. CRBP-1 downregulation associates with a more malignant phenotype in breast, ovarian, and nasopharyngeal cancers. Reexpression of CRBP-1 increased retinol sensitivity and reduced viability of ovarian cancer cells in vitro. Further studies are needed to explore new therapeutic strategies aimed at restoring CRBP-1-mediated intracellular retinol trafficking and the meaning of CRBP-1 expression in cancer patients' screening for a more personalized and efficacy retinoid therapy

    Scientific basis of nanotechnology, implications for the food sector and future trends

    Get PDF
    Nanotechnologies are opening up new horizons in almost all scientific and technological fields. Among these, applications of nanotechnologies are expected to bring large benefits and add value to the food and food-related industries through the current regulatory framework whole food chain, from production to processing, safety, packaging, transportation, storage and delivery. Nanotechnology consists in the realization and manipulation of nano-sized matter, the unique properties of which with respect to their bulk counterparts are illustrated and discussed. Then, the main tools and techniques routinely used in nanotechnology for the nanoscale characterization of food matrices as well as for the analytical determination of nanomaterials in food samples are reviewed. Finally, safety and risk assessment issues are discussed and an overview of applications of nanotechnology to the food sector is provided along with a description of th

    Combined Bulk and Surface Radiation Damage Effects at Very High Fluences in Silicon Detectors: Measurements and TCAD Simulations

    Full text link
    In this work we propose a new combined TCAD radiation damage modelling scheme, featuring both bulk and surface radiation damage effects, for the analysis of silicon detectors aimed at the High Luminosity LHC. In particular, a surface damage model has been developed by introducing the relevant parameters (NOX, NIT) extracted from experimental measurements carried out on p-type substrate test structures after gamma irradiations at doses in the range 10-500 Mrad(Si). An extended bulk model, by considering impact ionization and deep-level cross-sections variation, was included as well. The model has been validated through the comparison of the simulation findings with experimental measurements carried out at very high fluences (2 10^16 1 MeV equivalent n/cm^2) thus fostering the application of this TCAD approach for the design and optimization of the new generation of silicon detectors to be used in future HEP experiments.Comment: 8 pages, 14 figures. arXiv admin note: text overlap with arXiv:1611.1013

    Measurement of neutron detection efficiency between 22 and 174 MeV using two different kinds of Pb-scintillating fiber sampling calorimeters

    Full text link
    We exposed a prototype of the lead-scintillating fiber KLOE calorimeter to neutron beam of 21, 46 and 174 MeV at The Svedberg Laboratory, Uppsala, to study its neutron detection efficiency. This has been found larger than what expected considering the scintillator thickness of the prototype. %To check our method, we measured also the neutron %detection efficiency of a 5 cm thick NE110 scintillator. We show preliminary measurement carried out with a different prototype with a larger lead/fiber ratio, which proves the relevance of passive material to neutron detection efficiency in this kind of calorimeters

    Current nanocarrier strategies improve vitamin B12 pharmacokinetics, ameliorate patients’ lives, and reduce costs

    Get PDF
    Vitamin B12 (VitB12) is a naturally occurring compound produced by microorganisms and an essential nutrient for humans. Several papers highlight the role of VitB12 deficiency in bone and heart health, depression, memory performance, fertility, embryo development, and cancer, while VitB12 treatment is crucial for survival in inborn errors of VitB12 metabolism. VitB12 is administrated through intramuscular injection, thus impacting the patients’ lifestyle, although it is known that oral administration may meet the specific requirement even in the case of malabsorption. Furthermore, the high-dose injection of VitB12 does not ensure a constant dosage, while the oral route allows only 1.2% of the vitamin to be absorbed in human beings. Nanocarriers are promising nanotechnology that can enable therapies to be improved, reducing side effects. Today, nanocarrier strategies applied at VitB12 delivery are at the initial phase and aim to simplify administration, reduce costs, improve pharmacokinetics, and ameliorate the quality of patients’ lives. The safety of nanotechnologies is still under investigation and few treatments involving nanocarriers have been approved, so far. Here, we highlight the role of VitB12 in human metabolism and diseases, and the issues linked to its molecule properties, and discuss how nanocarriers can improve the therapy and supplementation of the vitamin and reduce possible side effects and limits
    • …
    corecore