7,693 research outputs found
PERSISTENT POCKETS OF EXTREME AMERICAN POVERTY: PEOPLE OR PLACE BASED?
Over the past four decades almost 400 U.S. counties have persistently had poverty rates in excess of 20 percent. These counties are generally characterized by weak economies and disadvantaged populations. This raises the hotly debated question of whether poverty-reducing policies should be directed more at helping people or helping the places where they reside. Using a variety of regression approaches, including geographically weighted regression analysis, we consistently find that local job growth especially reduces poverty in persistent-poverty counties. We also find that persistent-poverty counties do not respond more sluggishly to exogenous shocks, nor do they experience more adverse spillover effects from their neighboring counties. Finally, we identify some key geographic differences in the poverty determining mechanism among persistent-poverty clusters. Taken together, these results indicate that place-based economic development has a potential role for reducing poverty in these counties.poverty, persistent poverty, economic development policies, place-based policies, Food Security and Poverty,
Recommended from our members
An ontological approach for recovering legacy business content
Legacy Information Systems (LIS) pose a challenge for many organizations. On one hand, LIS are viewed as aging systems needing replacement; on the other hand, years of accumulated business knowledge have made these systems mission-critical. Current approaches however are often criticized for being overtly dependent on technology and ignoring the business knowledge which resides within LIS. In this light, this paper proposes a means of capturing the business knowledge in a technology agnostic manner and transforming it in a way that reaps the benefits of clear semantic expression - this transformation is achieved via the careful use of ontology. The approach called Content Sophistication (CS) aims to provide a model of the business that more closely adheres to the semantics and relationships of objects existing in the real world. The approach is illustrated via an example taken from a case study concerning the renovation of a large financial system and the outcome of the approach results in technology agnostic models that show improvements along several dimensions
Theoretical dissociation energies for ionic molecules
Ab initio calculations at the self-consistent-field and singles plus doubles configuration-interaction level are used to determine accurate spectroscopic parameters for most of the alkali and alkaline-earth fluorides, chlorides, oxides, sulfides, hydroxides, and isocyanides. Numerical Hartree-Fock (NHF) calculations are performed on selected systems to ensure that the extended Slater basis sets employed for the diatomic systems are near the Hartree-Fock limit. Extended Gaussian basis sets of at least triple-zeta plus double polarization equality are employed for the triatomic system. With this model, correlation effects are relatively small, but invariably increase the theoretical dissociation energies. The importance of correlating the electrons on both the anion and the metal is discussed. The theoretical dissociation energies are critically compared with the literature to rule out disparate experimental values. Theoretical (sup 2)Pi - (sup 2)Sigma (sup +) energy separations are presented for the alkali oxides and sulfides
RMS Radio Source Contributions to the Microwave Sky
Cross-correlations of the WMAP full sky K, Ka, Q, V, and W band maps with the
1.4 GHz NVSS source count map and the HEAO I A2 2-10 keV full sky X-ray flux
map are used to constrain rms fluctuations due to unresolved microwave sources
in the WMAP frequency range. In the Q band (40.7 GHz), a lower limit, taking
account of only those fluctuations correlated with the 1.4 GHz radio source
counts and X-ray flux, corresponds to an rms Rayleigh-Jeans temperature of ~ 2
microKelvin for a solid angle of one square degree. The correlated fluctuations
at the other bands are consistent with a beta = -2.1 +- 0.4 frequency spectrum.
Using the rms fluctuations of the X-ray flux and radio source counts, and the
cross-correlation of these two quantities as a guide, the above lower limit
leads to a plausible estimate of ~ 5 microKelvin for Q-band rms fluctuations in
one square degree. This value is similar to that implied by the excess, small
angular scale fluctuations observed in the Q band by WMAP, and is consistent
with estimates made by extrapolating low-frquency source counts.Comment: 17 pages, 8 figures, submitted to Ap
On the electron affinity of the oxygen atom
The electron affinity (EA) of oxygen is computed to be 1.287 eV, using 2p electron full configuration-interaction (CI) wave functions expanded in a 6s5p3d2f Slater-type orbital basis. The best complete active space self-consistent field - multireference CI (CASSCF-MRCI) result including only 2p correlation is 1.263 eV. However, inclusion of 2s intrashell and 2s2p intershell correlation increases the computed EA to 1.290 at the CASSCF-MRCI level. At the full CI basis set limit, the 2s contribution to the electron affinity is estimated to be as large as 0.1 eV. This study clearly establishes the synergistic effect between the higher excitations and basis set completeness on the electron affinity when the 2s electrons are correlated
The Evolution of L and T Dwarfs in Color-Magnitude Diagrams
We present new evolution sequences for very low mass stars, brown dwarfs and
giant planets and use them to explore a variety of influences on the evolution
of these objects. We compare our results with previous work and discuss the
causes of the differences and argue for the importance of the surface boundary
condition provided by atmosphere models including clouds.
The L- to T-type ultracool dwarf transition can be accommodated within the
Ackerman & Marley (2001) cloud model by varying the cloud sedimentation
parameter. We develop a simple model for the evolution across the L/T
transition. By combining the evolution calculation and our atmosphere models,
we generate colors and magnitudes of synthetic populations of ultracool dwarfs
in the field and in galactic clusters. We focus on near infrared color-
magnitude diagrams (CMDs) and on the nature of the ``second parameter'' that is
responsible for the scatter of colors along the Teff sequence. Variations in
metallicity and cloud parameters, unresolved binaries and possibly a relatively
young population all play a role in defining the spread of brown dwarfs along
the cooling sequence. We find that the transition from cloudy L dwarfs to
cloudless T dwarfs slows down the evolution and causes a pile up of substellar
objects in the transition region, in contradiction with previous studies. We
apply the same model to the Pleiades brown dwarf sequence. Taken at face value,
the Pleiades data suggest that the L/T transition occurs at lower Teff for
lower gravity objects. The simulated populations of brown dwarfs also reveal
that the phase of deuterium burning produces a distinctive feature in CMDs that
should be detectable in ~50-100 Myr old clusters.Comment: Accepted for publication in the ApJ. 52 pages including 20 figure
- …