11,759 research outputs found

    Neuronal Expression of Neural Nitric Oxide Synthase (nNOS) Protein is Suppressed by an Antisense RNA Transcribed from an NOS Pseudogene

    Get PDF
    Here, we show that a nitric oxide synthase (NOS) pseudogene is expressed in the CNS of the snail Lymnaea stagnalis. The pseudo-NOS transcript includes a region of significant antisense homology to a previously reported neuronal NOS (nNOS)-encoding mRNA. This suggested that the pseudo-NOS transcript acts as a natural antisense regulator of nNOS protein synthesis. In support of this, we show that both the nNOS-encoding and the pseudo-NOS transcripts are coexpressed in giant identified neurons (the cerebral giant cells) in the cerebral ganglion. Moreover, reverse transcription-PCR experiments on RNA isolated from the CNS establish that stable RNA-RNA duplex molecules do form between the two transcripts in vivo. Using an in vitro translation assay, we further demonstrate that the antisense region of the pseudogene transcript prevents the translation of nNOS protein from the nNOS-encoding mRNA. By analyzing NOS RNA and nNOS protein expression in two different identified neurons, we find that when both the nNOS-encoding and the pseudo-NOS transcripts are present in the same neuron, nNOS enzyme activity is substantially suppressed. Importantly, these results show that a natural antisense mechanism can mediate the translational control of nNOS expression in the Lymnaea CNS. Our findings also suggest that transcribed pseudogenes are not entirely without purpose and are a potential source of a new class of regulatory gene in the nervous system

    Anterograde Signalling by Nitric Oxide: Characterisation and In Vitro Reconstitution of an Identified Nitrergic Synapse

    Get PDF
    Nitric oxide (NO) is recognized as a signaling molecule in the CNS where it is a candidate retrograde neurotransmitter. Here we provide direct evidence that NO mediates slow excitatory anterograde transmission between the NO synthase (NOS)-expressing B2 neuron and an NO-responsive follower neuron named B7nor. Both are motoneurons located in the buccal ganglia of the snail Lymnaea stagnalis where they participate in feeding behavior. Transmission between B2 and B7nor is blocked by inhibiting NOS and is suppressed by extracellular scavenging of NO. Furthermore, focal application of NO to the cell body of the B7nor neuron causes a depolarization that mimics the effect of B2 activity. The slow interaction between the B2 and B7nor neurons can be re-established when the two neurons are cocultured, and it shows the same susceptibility to NOS inhibition and NO scavenging. In cell culture we have also examined spatial aspects of NO signaling. We show that before the formation of an anatomical connection, the presynaptic neuron can cause depolarizing potentials in the follower neuron at distances up to 50 micro(m). The strength of the interaction increases when the distance between the cells is reduced. Our results suggest that NO can function as both a synaptic and a nonsynaptic signaling molecul

    VOLUNTARY ECONOMIC AND ENVIRONMENTAL RISK TRADEOFFS IN CROP PROTECTION DECISIONS

    Get PDF
    An indirect utility model is employed for measuring farmers willingness to voluntarily accept yield losses for a reduction in environmental risk by decreasing pesticide use. Results support the hypothesis that farmers have self-described risk perceptions that enable them to make assessments of risk-yield tradeoffs. Policies designed to encourage and assist farmers making voluntary pesticide reductions can result in environmental risk reduction.pesticides. regulation, environmental policy, Crop Production/Industries, Environmental Economics and Policy, Risk and Uncertainty,

    Low Boom Configuration Analysis with FUN3D Adjoint Simulation Framework

    Get PDF
    Off-body pressure, forces, and moments for the Gulfstream Low Boom Model are computed with a Reynolds Averaged Navier Stokes solver coupled with the Spalart-Allmaras (SA) turbulence model. This is the first application of viscous output-based adaptation to reduce estimated discretization errors in off-body pressure for a wing body configuration. The output adaptation approach is compared to an a priori grid adaptation technique designed to resolve the signature on the centerline by stretching and aligning the grid to the freestream Mach angle. The output-based approach produced good predictions of centerline and off-centerline measurements. Eddy viscosity predicted by the SA turbulence model increased significantly with grid adaptation. Computed lift as a function of drag compares well with wind tunnel measurements for positive lift, but predicted lift, drag, and pitching moment as a function of angle of attack has significant differences from the measured data. The sensitivity of longitudinal forces and moment to grid refinement is much smaller than the differences between the computed and measured data

    Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift

    Get PDF
    The efficiency of broadband optical wavelength conversion by four-wave mixing in semiconductor traveling-wave amplifiers is measured for wavelength shifts up to 65 nm using a tandem amplifier geometry. A quantity we call the relative conversion efficiency function, which determines the strength of the four-wave mixing nonlinearity, was extracted from the data. Using this quantity, gain requirements for lossless four-wave mixing wavelength conversion are calculated and discussed. Signal to background noise ratio is also measured and discussed in this study

    Four-Wave Mixing in Semiconductor Traveling-wave Amplifiers for Efficient, Broadband, Wavelength Conversion up to 65 nm

    Get PDF
    Wavelength conversion is recognized as an important function in future fiber networks employing wavelength division multiplexing. The authors have recently demonstrated broad-band wavelength conversion over spans as large as 27 nm. Their approach uses ultra-fast four-wave mixing dynamics associated with intraband relaxation mechanisms in semiconductor traveling-wave amplifiers (TWA's). In the paper the authors present new results showing conversion over wavelength spans as large as 65 nm. This surpasses the previous record by over a factor of two. Of equal importance, they also verify experimentally their previous theoretical prediction that wavelength conversion efficiency varies as the cube of TWA single pass gain. In the course of our previous work, we have shown that the theoretical efficiency, η, of this process can be expressed by the simple relation: η = 3G + 2P + R(Δ⋋) where η is the ratio in dB of the converted signal output power to the signal input power and G is the single pass TWA optical gain. A crucial point is the presence of 3G in this expression - essentially, the wavelength converter uses the available TWA optimal gain three times. We verified this expression using an experimental setup similar to that described in. Tunable, single-frequency, erbium fiber ring lasers were used as pump and signal sources and TWA devices used contained tensile-strained mutli-quantum well active layers described in. Figure 1 shows conversion efficiency data plotted versus single-pass saturated optical gain. The pump power was -5.2 dBm and the signal power was -11.3 dBm. The measured slope of 3.18 confirms the cubic dependence of efficiency on single pass gain

    Study of interwell carrier transport by terahertz four-wave mixing in an optical amplifier with tensile and compressively strained quantum wells

    Get PDF
    Interwell carrier transport in a semiconductor optical amplifier having a structure of alternating tensile and compressively strained quantum wells was studied by four-wave mixing at detuning frequencies up to 1 THz. A calculation of transbarrier transport efficiency is also presented to qualitatively explain the measured signal spectra

    Parallel Anisotropic Unstructured Grid Adaptation

    Get PDF
    Computational Fluid Dynamics (CFD) has become critical to the design and analysis of aerospace vehicles. Parallel grid adaptation that resolves multiple scales with anisotropy is identified as one of the challenges in the CFD Vision 2030 Study to increase the capacity and capability of CFD simulation. The Study also cautions that computer architectures are undergoing a radical change and dramatic increases in algorithm concurrency will be required to exploit full performance. This paper reviews four different methods to parallel anisotropic grid generation. They cover both ends of the spectrum: (i) using existing state-of-the-art software optimized for a single core and modifying it for parallel platforms and (ii) designing and implementing scalable software with incomplete, but rapidly maturating functionality. A brief overview for each grid adaptation system is presented in the context of a telescopic approach for multilevel concurrency. These methods employ different approaches to enable parallel execution, which provides a unique opportunity to illustrate the relative behavior of each approach. Qualitative and quantitative metric evaluations are used to draw lessons for future developments in this critical area for parallel CFD simulation
    corecore