2,273 research outputs found

    Tropomyosin-like properties of clathrin light chains allow a rapid, high-yield purification.

    Get PDF
    The light chains (LCa and LCb) of bovine brain clathrin are resistant to heat denaturation by boiling, a property shared by tropomyosin (Bailey, K., 1948, Biochem. J., 43:271-281). Light chains were partially purified by boiling and centrifugation of a Tris-extract of crude membranes prepared from bovine brains (Keen, J. H., M. C. Willingham, and I. H. Pastan, 1979, Cell., 16:303-312). Contaminant polypeptides were then removed by size-exclusion high-pressure liquid chromatography. The purified light chains were separated from each other by using an immunoaffinity column prepared from a monoclonal antibody CVC.7 specific for LCa and not LCb

    The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor.

    Get PDF
    Although inhibition of natural killer (NK) cell-mediated lysis by the class I HLA molecules of target cells is an established phenomenon, knowledge of the features of class I molecules which induce this effect remains rudimentary. Using class I alleles HLA-B*1502 and B*1513 which differ only at residues 77-83 which define the Bw4 and Bw6 serological epitopes, we tested the hypothesis that the presence of the Bw4 epitope on class I molecules determines recognition by NKB1+ NK cells. HLA-B*1513 possesses the Bw4 epitope, whereas B*1502 has the Bw6 epitope. Lysis by NKB1+ NK cell clones of transfected target cells expressing B*1513 as the only HLA-A, -B, or -C molecule was inhibited, whereas killing of transfectants expressing B*1502 was not. Addition of an an anti-NKB1 monoclonal antibody reconstituted lysis of the targets expressing B*1513, but did not affect killing of targets bearing B*1502. The inhibitory effect of B*1513 could be similarly prevented by the addition of an anti-class I monoclonal antibody. These results show that the presence of the Bw4 epitope influences recognition of HLA-B molecules by NK cells that express NKB1, and suggest that the NKB1 molecule may act as a receptor for Bw4+ HLA-B alleles. Sequences outside of the Bw4 region must also affect recognition by NKB1+ NK cells, because lysis of transfectants expressing HLA-A*2403 or A*2501, which possess the Bw4 epitope but are in other ways substantially different from HLA-B molecules, was not increased by addition of the anti-NKB1 antibody. Asparagine 86, the single site of N-linked glycosylation on class I molecules, is in close proximity to the Bw4/Bw6 region. The glycosylation site of the Bw4-positive molecule B*5801 was mutated, and the mutant molecules tested for inhibition of NKB1+ NK cells. Inhibition that could be reversed by addition of the anti-NKB1 monoclonal antibody was observed, showing the presence of the carbohydrate moiety is not essential for class I recognition by NKB1+ NK cell clones

    In Memoriam: Peter Hartmann (1946-2020), publisher, colleague and friend

    Get PDF

    Strategies for Achieving Healthy Energy Balance Among African Americans in the Mississippi Delta

    Get PDF
    IntroductionLow-income African Americans who live in rural areas of the Deep South are particularly vulnerable to diseases associated with unhealthy energy imbalance. The Centers for Disease Control and Prevention (CDC) has suggested various physical activity strategies to achieve healthy energy balance. Our objective was to conduct formal, open-ended discussions with low-income African Americans in the Mississippi Delta to determine 1) their dietary habits and physical activity levels, 2) their attitudes toward CDC’s suggested physical activity strategies, and 3) their suggestions on how to achieve CDC’s strategies within their own environment. MethodsA qualitative method (focus groups) was used to conduct the study during 2005. Prestudy meetings were held with African American lay health workers to formulate a focus group topic guide, establish inclusion criteria for focus group participants, select meeting sites and times, and determine group segmentation guidelines. Focus groups were divided into two phases.ResultsAll discussions and focus group meetings were held in community centers within African American neighborhoods in the Mississippi Delta and were led by trained African American moderators. Phase I focus groups identified the following themes: overeating, low self-esteem, low income, lack of physical exercise, unhealthy methods of food preparation, a poor working definition of healthy energy balance, and superficial knowledge of strategies for achieving healthy energy balance. Phase 2 focus groups identified a preference for social support-based strategies for increasing physical activity levels. ConclusionEnergy balance strategies targeting low-income, rural African Americans in the Deep South may be more effective if they emphasize social interaction at the community and family levels and incorporate the concept of community volunteerism

    Breaking FOV-Aperture Trade-Off with Multi-Mode Nano-Photonic Antennas

    Get PDF
    Nano-photonic antennas are one of the key components in integrated photonic transmitter and receiver systems. Conventionally, grating couplers, designed to couple into an optical fiber, suffering from limitations such as large footprint and small field-of-view (FOV) have been used as on-chip antennas. The challenge of the antenna design is more pronounced for the receiver systems, where both the collected power by the antenna and its FOV often need to be maximized. While some novel solutions have been demonstrated recently, identifying fundamental limits and trade-offs in nano-photonic antenna design is essential for devising compact antenna structures with improved performance. In this paper, the fundamental electromagnetic limits, as well as fabrication imposed constraints on improving antenna effective aperture and FOV are studied, and approximated performance upper limits are derived and quantified. By deviating from the conventional assumptions leading to these limits, high-performance multi-mode antenna structures with performance characteristics beyond the conventional perceived limits are demonstrated. Finally, the application of a pillar multi-mode antenna in a dense array is discussed, an antenna array with more than 95% collection efficiency and 170∘ FOV is demonstrated, and a coherent receiving system utilizing such an aperture is presented

    Programmable Active Mirror: A Scalable Decentralized Router

    Get PDF
    This work proposes and demonstrates the scalable router array that eliminates the internal centralization of conventional arrays, unlocking scalability, and the potential for a system composed of spatially separated elements that do not share a common timing reference. Architectural variations are presented, and their specific tradeoffs are discussed. The general operation, steering capabilities, signal and noise considerations, and timing control advantages are evaluated through analysis, simulation, and measurements. An element-level CMOS radio frequency integrated circuit (RFIC) is developed and used to demonstrate a four-element 25 GHz prototype router. The RFIC's programmable true time delay (TTD) control is used to correct path-length-difference-induced intersymbol interference (ISI) and improve a rerouted 270-Mb/s 64-QAM constellation from a completely scrambled state to an EVM of 4% rms (-28 dB). The prototype scalable router's concurrent dual-beam capabilities are demonstrated by simultaneously steering two full power beams at 24.9 and 25 GHz in two different directions in a free-space electromagnetic setup

    Breaking FOV-Aperture Trade-Off with Multi-Mode Nano-Photonic Antennas

    Get PDF
    Nano-photonic antennas are one of the key components in integrated photonic transmitter and receiver systems. Conventionally, grating couplers, designed to couple into an optical fiber, suffering from limitations such as large footprint and small field-of-view (FOV) have been used as on-chip antennas. The challenge of the antenna design is more pronounced for the receiver systems, where both the collected power by the antenna and its FOV often need to be maximized. While some novel solutions have been demonstrated recently, identifying fundamental limits and trade-offs in nano-photonic antenna design is essential for devising compact antenna structures with improved performance. In this paper, the fundamental electromagnetic limits, as well as fabrication imposed constraints on improving antenna effective aperture and FOV are studied, and approximated performance upper limits are derived and quantified. By deviating from the conventional assumptions leading to these limits, high-performance multi-mode antenna structures with performance characteristics beyond the conventional perceived limits are demonstrated. Finally, the application of a pillar multi-mode antenna in a dense array is discussed, an antenna array with more than 95% collection efficiency and 170∘ FOV is demonstrated, and a coherent receiving system utilizing such an aperture is presented
    • …
    corecore