246 research outputs found

    Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events

    Get PDF
    Analysis of 772 complete SARS-CoV-2 genomes from early in the Boston area epidemic revealed numerous introductions of the virus, a small number of which led to most cases. The data revealed two superspreading events. One, in a skilled nursing facility, led to rapid transmission and significant mortality in this vulnerable population but little broader spread, while other introductions into the facility had little effect. The second, at an international business conference, produced sustained community transmission and was exported, resulting in extensive regional, national, and international spread. The two events also differed significantly in the genetic variation they generated, suggesting varying transmission dynamics in superspreading events. Our results show how genomic epidemiology can help understand the link between individual clusters and wider community spread

    Containing the spread of mumps on college campuses

    Get PDF
    College campuses are vulnerable to infectious disease outbreaks, and there is an urgent need to develop better strategies to mitigate their size and duration, particularly as educational institutions around the world adapt to in-person instruction during the COVID-19 pandemic. Towards addressing this need, we applied a stochastic compartmental model to quantify the impact of university-level responses to contain a mumps outbreak at Harvard University in 2016. We used our model to determine which containment interventions were most effective and study alternative scenarios without and with earlier interventions. This model allows for stochastic variation in small populations, missing or unobserved case data and changes in disease transmission rates post-intervention. The results suggest that control measures implemented by the University\u27s Health Services, including rapid isolation of suspected cases, were very effective at containing the outbreak. Without those measures, the outbreak could have been four times larger. More generally, we conclude that universities should apply (i) diagnostic protocols that address false negatives from molecular tests and (ii) strict quarantine policies to contain the spread of easily transmissible infectious diseases such as mumps among their students. This modelling approach could be applied to data from other outbreaks in college campuses and similar small population settings

    Containing the Spread of Infectious Disease on College Campuses [preprint]

    Get PDF
    College campuses are highly vulnerable to infectious disease outbreaks, and there is a pressing need to develop better strategies to mitigate their size and duration, particularly as educational institutions around the world reopen to in-person instruction in the midst of the COVID-19 pandemic. Towards addressing this need, we applied a stochastic compartmental model to quantify the impact of university-level responses to past mumps outbreaks in college campuses and used it to determine which control interventions are most effective. Mumps is a very relevant disease in such settings, given its airborne mode of transmission, high infectivity, and recurrence of outbreaks despite availability of a vaccine. Our model aims to simultaneously overcome three crucial issues: stochastic variation in small populations, missing or unobserved case data, and changes in disease transmission rates post-intervention. We tested the model and assessed various interventions using data from the 2014 and 2016 mumps outbreaks at Ohio State University and Harvard University, respectively. Our results suggest that in order to decrease infectious disease incidence on their campuses, universities should apply diagnostic protocols that address false negatives from molecular tests, stricter quarantine policies, and effective awareness campaigns among their students and staff. Our model can be applied to data from other outbreaks in college campuses and similar small-population settings

    Genome-wide scans provide evidence for positive selection of genes implicated in Lassa fever

    Get PDF
    Rapidly evolving viruses and other pathogens can have an immense impact on human evolution as natural selection acts to increase the prevalence of genetic variants providing resistance to disease. With the emergence of large datasets of human genetic variation, we can search for signatures of natural selection in the human genome driven by such disease-causing microorganisms. Based on this approach, we have previously hypothesized that Lassa virus (LASV) may have been a driver of natural selection in West African populations where Lassa haemorrhagic fever is endemic. In this study, we provide further evidence for this notion. By applying tests for selection to genome-wide data from the International Haplotype Map Consortium and the 1000 Genomes Consortium, we demonstrate evidence for positive selection in LARGE and interleukin 21 (IL21), two genes implicated in LASV infectivity and immunity. We further localized the signals of selection, using the recently developed composite of multiple signals method, to introns and putative regulatory regions of those genes. Our results suggest that natural selection may have targeted variants giving rise to alternative splicing or differential gene expression of LARGE and IL21. Overall, our study supports the hypothesis that selective pressures imposed by LASV may have led to the emergence of particular alleles conferring resistance to Lassa fever, and opens up new avenues of research pursuit

    Genetic Signatures of Strong Recent Positive Selection at the Lactase Gene

    Get PDF
    In most human populations, the ability to digest lactose contained in milk usually disappears in childhood, but in European-derived populations, lactase activity frequently persists into adulthood (Scrimshaw and Murray 1988). It has been suggested (Cavalli-Sforza 1973; Hollox et al. 2001; Enattah et al. 2002; Poulter et al. 2003) that a selective advantage based on additional nutrition from dairy explains these genetically determined population differences (Simoons 1970; Kretchmer 1971; Scrimshaw and Murray 1988; Enattah et al. 2002), but formal population-genetics–based evidence of selection has not yet been provided. To assess the population-genetics evidence for selection, we typed 101 single-nucleotide polymorphisms covering 3.2 Mb around the lactase gene. In northern European–derived populations, two alleles that are tightly associated with lactase persistence (Enattah et al. 2002) uniquely mark a common (∼77%) haplotype that extends largely undisrupted for >1 Mb. We provide two new lines of genetic evidence that this long, common haplotype arose rapidly due to recent selection: (1) by use of the traditional FST measure and a novel test based on pexcess, we demonstrate large frequency differences among populations for the persistence-associated markers and for flanking markers throughout the haplotype, and (2) we show that the haplotype is unusually long, given its high frequency—a hallmark of recent selection. We estimate that strong selection occurred within the past 5,000–10,000 years, consistent with an advantage to lactase persistence in the setting of dairy farming; the signals of selection we observe are among the strongest yet seen for any gene in the genome
    • …
    corecore