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Abstract 
 
College campuses are highly vulnerable to infectious disease outbreaks, and there is a pressing 
need to develop better strategies to mitigate their size and duration, particularly as educational 
institutions around the world reopen to in-person instruction in the midst of the COVID-19 
pandemic. Towards addressing this need, we applied a stochastic compartmental model to quantify 
the impact of university-level responses to past mumps outbreaks in college campuses and used it 
to determine which control interventions are most effective. Mumps is a very relevant disease in 
such settings, given its airborne mode of transmission, high infectivity, and recurrence of outbreaks 
despite availability of a vaccine. Our model aims to simultaneously overcome three crucial issues: 
stochastic variation in small populations, missing or unobserved case data, and changes in disease 
transmission rates post-intervention. We tested the model and assessed various interventions using 
data from the 2014 and 2016 mumps outbreaks at Ohio State University and Harvard University, 
respectively. Our results suggest that in order to decrease infectious disease incidence on their 
campuses, universities should apply diagnostic protocols that address false negatives from 
molecular tests, stricter quarantine policies, and effective awareness campaigns among their 
students and staff. Our model can be applied to data from other outbreaks in college campuses and 
similar small-population settings. 
 
Keywords: Infectious disease, mumps outbreak, college campus, stochastic SEIR model, public 
health intervention, Harvard University, Ohio State University  
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1 INTRODUCTION 1 

The ongoing COVID-19 pandemic has forced school closures around the world (1), and 2 

universities in the United States and elsewhere are designing plans for safe reopening (2, 3). This 3 

is a challenging task, as college campuses provide ideal breeding grounds for infectious disease. 4 

Students live in close quarters, pack into lecture halls, share food and drinks in the dining areas, 5 

and engage in intimate contact. Outbreaks in these settings can spread very quickly. Indeed, a 6 

meningitis outbreak took place at Princeton University in March 2014, eventually claiming the life 7 

of one student. The Centers for Disease Control and Prevention (CDC) reported the attack rate of 8 

the disease on Princeton’s campus to be 134 per 100,000 students – 1,400 times greater than the 9 

national average (4).  10 

A recent string of outbreaks on college campuses involves mumps, once a common 11 

childhood viral disease. After introduction of the measles-mumps-rubella (MMR) vaccine in 1977 12 

and the two-dose MMR vaccination program in 1989, the number of mumps cases in the US 13 

plummeted by 2005. But, despite a vaccinated population, there has been a recent resurgence of 14 

mumps, with a steep jump from 229 cases in 2012 to 5833 cases in 2016 (5). Although a typically 15 

mild disease in children, up to 10% of mumps infections acquired after puberty can cause severe 16 

complications, including orchitis, meningitis, and deafness. Furthermore, a majority of recent 17 

mumps cases have occurred in young adults who had received the recommended two MMR doses. 18 

This suggests that vaccine-derived immunity wanes over time, unlike natural immunity – 19 

protection acquired from contracting the disease – which is permanent. Lewnard and Grad estimate 20 

that 33.8% of young adults (ages 20 to 24) were susceptible to mumps in 1990, in contrast to the 21 

52.8% susceptible in 2006, as vaccinations have replaced contraction as the source of immunity 22 

(6). The temporary immunity from vaccines strengthens the argument for strict containment as a 23 
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critical line of defense amidst an outbreak. In the case of COVID-19, even with the availability of 24 

several vaccines (7), the challenges associated with their wide and quick distribution (8), the 25 

substantial asymptomatic and pre-symptomatic transmission of the disease (9), and the possibility 26 

of new viral strains with higher transmissibility (10) provide further support for such approaches. 27 

The spread of mumps at Harvard University in 2016, and extensive public health measures 28 

and documentation, presents a rare opportunity to closely examine an outbreak on a college 29 

campus. Between January 1 and August 31, 2016, 210 confirmed mumps cases were identified in 30 

the Greater Boston area, with most detected at Harvard University. Mumps is a highly contagious 31 

disease with the potential to travel quickly and pervasively on a crowded college campus. Some 32 

of the most notable mumps outbreaks on college campuses occurred in Iowa (11), Indiana (12), 33 

and Ohio (13). But, whereas mumps spread rapidly at Ohio State University (OSU) in 2014 and 34 

the University of Iowa in 2006 and 2016, Harvard employed a number of interventions that may 35 

have helped mitigate spread of the disease and contain it over just a few months (14). The 36 

possibility of distinct viral strains resulting in different outbreak dynamics between schools can be 37 

safely dismissed, as it was shown by application of genetic epidemiology methods (15) that all 38 

mumps outbreaks in the US since at least 2006 have been likely caused by the same mumps lineage, 39 

mumps virus genotype G. 40 

The successful containment at Harvard motivates us to explore varied intervention 41 

strategies, given the relative costs of prevention. Even if the use of a booster MMR vaccination is 42 

proven theoretically to reduce infection and thus potentially prevent outbreaks (6, 11), it is unlikely 43 

that universities with limited resources will proactively invest in a third dose. A rough cost analysis 44 

conducted by Harvard University Health Services (HUHS) showed that, while the total mumps 45 

care expenses for Harvard was approximately $75,000, the cost of providing a third MMR dose to 46 
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every member of the Harvard community (at $83 per vaccination) was $1.7 million (16). Therefore, 47 

at least in the short term, a third MMR dose cannot be the only answer to handling mumps 48 

outbreaks; we must consider more immediate solutions and interventions.  49 

In order to understand the effectiveness of interventions aimed at containing an outbreak 50 

on a college campus, we constructed an epidemiological model to simulate the dynamics of mumps 51 

on such a population and quantify the impact of various interventions. Most epidemiological 52 

models have at least one of three flaws: they cannot handle random fluctuations in a small 53 

population, require complete data without unobserved or missing cases, or do not accommodate 54 

time-varying infection or recovery rates as a result of dynamically changing interventions. The 55 

modified stochastic susceptible-exposed-infectious-recovered (SEIR) model presented in this 56 

paper addresses these three issues. We developed this model within the framework of a Partially 57 

Observed Markov Process (POMP), which has been applied to introduce structural stochasticity 58 

into epidemic models (17). We fit model parameters on case data for Harvard’s 2016 mumps 59 

outbreak provided by the Massachusetts Department of Public Health (MDPH). We compared it 60 

to data from OSU, one of the few universities that had extensive publicly available data through 61 

the CDC.  62 

In applying our model, we found that each of the interventions employed by HUHS -- email 63 

awareness campaigns, more aggressive diagnoses where clinical symptoms alone were enough to 64 

result in quarantine, and strict isolation of suspected cases -- were crucial in reducing the size and 65 

duration of the outbreak. In particular, Harvard’s policies drastically increased the reporting rate 66 

of infection and shortened the time a person remains infectious in a susceptible population, relative 67 

to the baseline. As a result, one mumps case at Harvard infected less than two susceptible 68 

individuals on average, and much less once aggressive diagnosis was in place, compared to cases 69 
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at non-residential schools like OSU, in which one mumps case infected an average of six 70 

susceptible individuals. However, the OSU data suggests that self-isolation could be effective, if 71 

adopted rigorously by students. The conclusions from this paper could guide future responses to 72 

infectious disease outbreaks on college campuses. Without effective measures in place, highly 73 

transmissible diseases like mumps, meningitis, and now COVID-19, spread in these environments 74 

at much faster rates than in the overall population and can lead to serious health complications. 75 

Simple interventions that ensure most cases are detected, treated, and separated from susceptible 76 

individuals make a significant difference. 77 

78 
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2. MATERIALS AND METHODS 79 

 80 
2.1 Harvard mumps outbreak  81 

2.1.1 Data 82 

The mumps outbreak at Harvard began in February 2016, when six students reported onset of 83 

parotitis to HUHS. For the next three months, the number of cases continued to rise, until finally 84 

plateauing in late May and early June. There were two waves of the outbreak – one occurring in 85 

the month of March and a larger one occurring in mid-April – totaling 189 confirmed and probable 86 

cases (Figure 1). Confirmed cases are those with a positive laboratory test for mumps virus. 87 

Probable cases are those who either tested positive for the anti-mumps IgM antibody or had an 88 

epidemiologic linkage to another probable or confirmed case (18, 19). The majority of these cases 89 

received the recommended two doses of MMR (20).  90 

We use data provided by MDPH, which documented every mumps case between 2015 and 91 

2017 at schools across Massachusetts (21). This data includes demographics of the patient (gender, 92 

age, county, and institution), symptoms and vaccination status, date they reported their symptoms 93 

and the date of symptom onset, and lag time between the date of symptom onset and admission to 94 

a medical clinic. 95 

 96 

2.1.2 Interventions 97 

Harvard University employed three main interventions: (i) an email awareness campaign, (ii) more 98 

aggressive diagnoses, and (iii) strict isolation of infectious persons.  99 

First, between February and May 2016, HUHS sent six different emails to Harvard students, 100 

employees, and colleagues with information on the gravity of the outbreak, recommendations on 101 

how to prevent transmission, and instructions on how to identify mumps. This raised awareness 102 
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throughout the campus. Particularly at the peak of the outbreak, roommates, resident deans, and 103 

athletic coaches all played essential roles in reporting potential cases of mumps, so that few cases 104 

likely went undetected and untreated by HUHS (18, 19).  105 

Second, Harvard acted vigorously to treat and isolate anyone suspected of mumps 106 

throughout the outbreak. Initially, due to the disease’s non-specific symptoms and less extreme 107 

manifestation in vaccinated people, HUHS used positive mumps PCR tests as a necessary ground 108 

for diagnosis. Later, on recommendation from the MDPH, HUHS stopped automatically ruling out 109 

those with negative PCR results, given that false negatives were quite frequent in vaccinated 110 

individuals and that some individuals reported their infection to the clinic belatedly. In outbreaks 111 

among two-dose vaccine recipients, mumps virus was only detected in samples from 112 

approximately 30-35% of case patients if the samples were collected within the first three days 113 

following onset of parotitis (22). Anyone who entered HUHS displaying clinical symptoms of 114 

mumps was now deemed infected and infectious. This change in the diagnosis protocol took place 115 

on April 15 2014, day 61 of the outbreak (19). 116 

Third and perhaps most notably, Harvard isolated most confirmed or probable cases of 117 

mumps. While many universities simply suggest self-isolation in one’s room or dormitory (which 118 

leaves roommates and friends highly susceptible to the disease), Harvard removed anyone with 119 

clinical symptoms of mumps from the population. Of the 230 total cases at Harvard between 120 

February 2016 and November 2017, 96 were isolated in alternate housing on campus, while 110 121 

were isolated off-site. Although a person remains infectious with mumps for five days, Harvard 122 

isolated patients for six days for additional measure (18).  123 

Harvard also used a variety of smaller techniques to contain the disease. For instance, water 124 

fountains with a weak upward flow were repaired in late March when it became apparent that 125 
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students were directly touching the fountain with their water bottles or mouths (19). In this study, 126 

we only considered the first three larger-scale interventions in our models. Figure 1 shows a 127 

timeline of the interventions as well as periods when the population was fluctuating (such as during 128 

spring and summer break). Around two weeks after HUHS improved its criteria for diagnosis in 129 

mid-April, there was a steep decline in the number of new cases. These interventions were possible 130 

thanks to the ample resources that Harvard has at its disposal, which may not be available at other 131 

universities. Nevertheless, this situation makes Harvard an ideal testing ground for interventions 132 

that could not be deployed elsewhere, at least without solid proof of their efficacy. Thus, we 133 

quantify the effects of the three main interventions (awareness campaign, aggressive diagnoses, 134 

and strict isolation of suspected cases) further in the modeling section of this paper.  135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

  144 

 145 

 146 

 147 

 148 

Figure 1: The daily number of new mumps cases (probable or confirmed) at Harvard and the 
timeline of school vacations and control interventions employed by HUHS between February 
and June 2016. Both probable and confirmed cases display clinical symptoms of mumps, but 
only confirmed cases have a positive PCR result. HUHS sent multiple emails over the course of 
the outbreak, raising awareness about the spread of mumps. Additionally, in mid-April, HUHS 
began more carefully diagnosing mumps, rather than automatically ruling out those with 
negative PCR tests. The isolation policy is not shown because it occurred continuously 
throughout the entire outbreak.  
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2.2 Ohio State University mumps outbreak 149 

2.2.1 Data on the outbreak 150 

In 2014, a large outbreak of mumps occurred in central Ohio, with the majority of cases linked to 151 

OSU in Columbus. The outbreak began in February 2014 and peaked in early April with 96 cases 152 

in one week. By summer and early fall, the number of cases had dramatically dropped and 153 

stabilized (13). We therefore restrict our analysis of the outbreak to the time between Week 1 and 154 

Week 40 of 2014, in which there were a total of 528 cases (Figure 2). We obtained this data from 155 

CDC’s Morbidity and Mortality Weekly Report (23). One drawback of the data is that the cases 156 

are reported weekly, making our analysis and parameter estimations less precise. Furthermore, we 157 

cannot guarantee that all the cases in this dataset are linked to the university itself, but we know 158 

from news reports that most cases in Ohio occurred on campus during the first half of 2014 (13). 159 

The proximity in time to the Harvard outbreak and the differences in response detailed below make 160 

this a good dataset to compare to. 161 

 162 

2.2.2 Characteristics of the response 163 

We were unable to acquire data directly from OSU, and thus the exact timeline and range of 164 

interventions administered over this period are not known. We learned through online searches 165 

that advisories were published by the university, notifying students of the issue and how to prevent 166 

its spread. One notice published by OSU’s medical center reads: “Stay at home for five days after 167 

symptoms (salivary gland swelling) begins (required by Ohio law OAC 3701-3-13, (P)); avoid 168 

school, work, social gatherings, and other public settings” (24). These advisories were distributed 169 

since March 2014 (25), and local news outlets also started reporting the outbreak earlier in the 170 
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month (26). It appears, however, that like most affected universities, OSU did not formally isolate 171 

infectious persons. 172 

 173 

 174 

 175 

 176 

2.3 Epidemiological POMP model  177 

The epidemiology of mumps can be captured by a Susceptible-Exposed-Infected-Removed (SEIR) 178 

compartmental model: after exposure, individuals go through a latent non-infectious period, 179 

followed by an infectious phase (27). Infectious individuals are removed from the transmission 180 

process either by recovery or isolation, after which they become immune. Compartmental models 181 

simplify the mathematical modeling of infectious diseases; however, they assume access to fully 182 

observed disease data. In reality, not all mumps cases are reported, and latent mumps carriers 183 

exhibit no symptoms at all. In order to address this issue, our approach integrates a standard SEIR 184 

0

25
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100

Feb Mar Apr May Jun Jul Ago Sep Oct Nov
time

ca
se
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Awareness campaing & news reporting

Outbreak at Ohio State University

Figure 2: Number of weekly mumps cases in Ohio (particularly Ohio State University) between 
January and November 2014. There were 528 cases during this time period, with most occurring 
between Match and July. The dotted line in the last week of March indicates the intervention 
consisting in awareness campaign by OSU, as well as local and national news reports about the 
outbreak. 
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model with a Partially Observed Markov Process (POMP) model (28). This allows us to combine 185 

the simplicity of compartmental models with a probabilistic framework for the underlying 186 

dynamics and the observed data. POMP models require the specification of a process model that 187 

describes stochastic transitions between the (unobserved) states of the system (in this case, the 188 

SEIR compartments), and a measurement model where the distribution of observed data (e.g.: 189 

confirmed cases) is expressed as a function of the unobserved states. The stochasticity introduced 190 

in the SEIR dynamics makes our model better suited to describe small populations, such as college 191 

campuses, where random fluctuations can be significant in relation to the size of the population. 192 

We describe the process and measurement models below. 193 

 194 

2.3.1 Process model 195 

The process model, defined as a stochastic SEIR model, provides the change in true incidence of 196 

mumps at every time point. We add parameters that induce random fluctuations into the population 197 

and change the compartments’ rates of transfer in response to interventions. We do this by using 198 

probabilistic densities for the transition of state variables. Moreover, although disease dynamics 199 

are technically a continuous Markov process, this is computationally complex and inefficient to 200 

model, and so we make discretized approximations by updating the state variables after a time step, 201 

𝛿. Due to the varying granularity of the observed data (daily and weekly), we used two different 202 

time steps: 𝛿" = 2.4	ℎ𝑜𝑢𝑟𝑠 for Harvard and 𝛿- = 12	ℎ𝑜𝑢𝑟𝑠 for OSU. The system of discretized 203 

equations is shown in Equation 1, where 𝐵(𝑡)  is the number of susceptible individuals who 204 

become exposed to mumps, 𝐶(𝑡) is the number of newly infectious cases, and 𝐷(𝑡) is the number 205 

of cases that are removed from the population: 206 
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𝑆(𝑡 + 𝛿) = 	𝑆(𝑡) − 	𝐵(𝑡)	207 
	208 

𝐸(𝑡 + 𝛿) = 	𝐸(𝑡) + 	𝐵(𝑡) − 	𝐶(𝑡)	209 
	210 

𝐼(𝑡 + 𝛿) = 	𝐼(𝑡) + 	𝐶(𝑡) − 	𝐷(𝑡)	211 
	212 

𝑅(𝑡 + 𝛿) = 	𝑅(𝑡) + 𝐷(𝑡)	213 
	214 

𝑆(𝑡) + 	𝐸(𝑡) + 	𝐼(𝑡) + 	𝑅(𝑡) = 	𝑁	215 
	216 

Equation 1 describes how the sizes of the four compartments (susceptible, exposed, 217 

infectious, and removed) change between (𝑡, 𝑡 + 𝛿) . The model further assumes that the 218 

population size 𝑁 remains constant at every time point. We added inherent randomness to our 219 

model by setting 𝐵(𝑡), 𝐶(𝑡), and 𝐷(𝑡) as binomials. If we assume that the length of time an 220 

individual spends in a compartment is exponentially distributed with some compartment-specific 221 

rate 𝑥(𝑡) , then the probability of remaining in that compartment for an additional day is 222 

𝑒𝑥𝑝(−𝑥(𝑡)) and the probability of leaving that compartment is 1 − 	𝑒𝑥𝑝	(−𝑥(𝑡)): 223 

𝐵(𝑡) ∼ 	𝐵𝑖𝑛(𝑆(𝑡), 1 −𝑒𝑥𝑝 (−𝜆(𝑡	)), where 𝜆(𝑡) = 	𝛽(𝑡) E(F)
G

 224 

𝐶(𝑡) ∼ 𝐵𝑖𝑛(𝐸(𝑡), 1 −𝑒𝑥𝑝 (−𝜎	))	225 
	226 

𝐷(𝑡) ∼ 𝐵𝑖𝑛(𝐼(𝑡), 1 −𝑒𝑥𝑝 (−𝛾(𝑡)	))	227 
	228 

 The force of infection, 𝜆(𝑡), is the transition rate between the susceptible and exposed 229 

classes at time t, and can be expressed as 𝛽(𝑡) E(F)
G

, where 𝛽(𝑡) represents the transmission rate of 230 

the disease. The removal rate between the infectious and removed compartments at time t is given 231 

by 𝛾(𝑡), and transition rate between the exposed and infectious classes is 𝜎. Therefore, 𝛾(𝑡)JK 232 

represents the mean length of time a person is infectious before being removed from the population 233 

(either because of intervention efforts or natural recovery), while 𝜎JK represents the mean length 234 

of time a person stays in the latent stage. With this notation, we are implicitly assuming that the 235 

transmission and removal rates could change over time due to interventions or changes in behavior, 236 

 
(1) 

 
(2) 
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while the duration of the latent stage is constant and determined by the physiopathology of the 237 

disease. We will justify these assumptions for Harvard and OSU next, as well as provide explicit 238 

formulas for 𝛽(𝑡)	and  𝛾(𝑡). 239 

Leaving aside the unlikely possibility of change in pathogen’s infectivity, the transmission 240 

rate 𝛽(𝑡) essentially depends on the frequency of exposure events. In the case of Harvard, its 241 

nature as a residential campus would lead to significant decreases in student population, and 242 

therefore exposures, during school vacations. Exposure at OSU, a non-residential campus, is 243 

arguably less affected by vacation breaks. Another potential cause for reduction in exposures is 244 

awareness campaigns resulting in the adoption of preventive behaviors by students. Both Harvard 245 

and OSU adopted such campaigns, in the former, implemented as emails regularly sent out by 246 

HUHS recommending personal hygiene and testing in case of symptoms compatible with mumps; 247 

in the latter, in the form of advisories posted around campus and online, advising self-isolation to 248 

those students who presented symptoms. Furthermore, due to the scale of the mumps outbreak in 249 

Ohio, it received local and national news coverage, particularly in connection with OSU. 250 

Anecdotal evidence (i.e.: conversation with students) and, most importantly, the fact that HUHS 251 

emails were throughout the outbreak, make us conclude that emails were not particularly effective. 252 

On the other hand, news coverage in the case of OSU could have led to additional awareness by 253 

students and encouraged some to self-isolate. We argue that self-isolation results in lowering of 254 

transmission rate, not shortening of the removal time, because it is not perfect quarantine and 255 

people can still interact and become exposed, albeit at a lower frequency. Based on these known 256 

facts and our interpretation of them, we propose the following transmission rate 𝛽"(𝑡) for the 257 

Harvard model:  258 

𝛽"(𝑡) = 	𝑝𝛽"	,			𝑡0 ≤ 𝑡 ≤ 𝑡1	𝑜𝑟	𝑡 ≥ 𝑡2		 259 
	= 	𝛽"	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																		 260 

 
(3) 
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Here, t0 and t1 represent the starting and ending dates for the spring break (March 12-20 2016), 261 

and t2 the beginning of the summer recess (May 26 2016). The constant 𝛽"  is the baseline 262 

transmission rate during normal class term, and the parameter p is a number between 0 and 1 that 263 

accounts for the reduction of student population on campus during the school vacation. In the case 264 

of OSU, we propose:  265 

𝛽-(𝑡) = 	𝑤𝛽-	,			𝑡 ≥ 𝜁		 266 
													= 	𝛽-	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 267 

 268 
In this equation, 𝛽- the baseline transmission rate, w is a constant lower than 1, and 𝜁 the time 269 

when students began to self- quarantine. Based on publication of public health advisories and 270 

local news, we set this time as the last week of March 2014 (week 12). Since Harvard’s 271 

quarantine was in effect through the entirety of the outbreak, we did not incorporate a similar w 272 

coefficient to the corresponding 𝛽"(𝑡) equation for Harvard. 273 

 The removal rate 𝛾(𝑡) can also be affected by interventions and personal behaviors. We 274 

know that HUHS diagnosis protocol changed on day 61 of the outbreak at Harvard, resulting in a 275 

shorter average removal time since clinical presentation of symptoms alone was enough to result 276 

in strict isolation of suspected cases. Thus, we propose the following 𝛾"(𝑡) for Harvard:  277 

𝛾"(𝑡) = 	𝑞𝛾"	, 𝑡 ≥ 𝜏		 278 
						= 	 𝛾", 𝑡 < 𝜏 279 

Here, q is a constant greater than 1 and 𝜏 is the date when the new criteria was implemented (April 280 

15, 2014). The constant 𝛾"  is the baseline removal rate reflecting the impact of the original 281 

diagnosis protocol. In the OSU model, on the other hand, we assume a constant recovery rate 𝛾 282 

equal to the population average for mumps, since infected individuals self-isolate at home. This 283 

would not result in a strict quarantine but in a reduced contact rate with susceptible individuals, 284 

which is already modeled by a lower transmission rate in equation (4).  285 

 
(4) 

 
(5) 
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Finally, it is necessary to estimate the basic reproduction number, 𝑅0, which equals the 286 

expected number of secondary cases produced by an infectious person in a completely susceptible 287 

population (27). 𝑅0 measures the initial growth rate of an outbreak and so, if it is less than 1, then 288 

the infection will die out and there will be no epidemic. For our stochastic SEIR model, this 289 

constant can be expressed as 𝑅0 = T
U
  (29). Meanwhile, the time-dependent effective reproduction 290 

number is defined as 𝑅V(𝑡) =
T(F)
U(F)

∗ X(F)
G

, but because 𝑆(𝑡) 	≈ 	𝑁, we can simplify this expression 291 

to 𝑅V(𝑡) 	≈ 	
T(F)
U(F)

. Both the basic and effective reproduction numbers allow us to understand the 292 

strength of an outbreak. 293 

 294 

2.3.2 Measurement Model 295 

Although it is impossible to directly record the number of people that are susceptible, exposed, 296 

infectious, and removed directly, the MDPH and CDC data tells us the number of observed cases 297 

per day. The mean number of observed cases per day is the true number of cases multiplied by the 298 

reporting rate 𝜌 (𝜌 < 1). However, rather than simply denoting the observed number of cases as a 299 

binomial distribution, we account for greater variability in the measurements than a binomial 300 

distribution expects, since college populations are “small” (comparted to cities and larger 301 

administrative units) and more affected by random fluctuations (30). Thus, the number of observed 302 

cases, 𝑦F, given the number of true cases,	𝐶(𝑡), can be best modelled by an overdispersed binomial 303 

distribution defined as a discretized Normal random variable:   304 

𝑦F	|	𝐶(𝑡) 	∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(𝜌𝐶(𝑡), 𝜌(1 − 𝜌)𝐶(𝑡) + `𝜓𝜌𝐶(𝑡)b
c
)	305 

	306 
	307 

The parameter 𝜓 handles the increased variability in a small population. If 𝜓 = 0, the 308 

variance in our measurement model simplifies to the variance for a binomial distribution.  309 

 
(6) 
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 310 

2.3.3 Final POMP Model 311 

The process and measurement models define our final POMP model. For each time point, the 312 

process model generates the number of new cases based on binomially distributed counts. The 313 

measurement model then estimates the observed number of cases based on the true number of 314 

cases and reporting rate. The free parameters in our POMP models for Harvard and OSU that need 315 

to be estimated from the data are the following: (i) 𝛽" and 𝛽-, baseline transmission rates, (ii) p 316 

and w, decrease in transmission rate at Harvard and OSU due to vacation and self-isolation, 317 

respectively, (iii) 𝛾" baseline removal rate at Harvard (iv) 𝑞, increase in removal rate due to the 318 

updated HUHS diagnosis protocol, (v) 𝜌"  and 𝜌-,  case reporting rates, (vi) 𝜓"  and 𝜓- , 319 

overdispersion coefficient representing additional variability in the populations.  320 

 321 

2.3 Fixed parameters 322 

In addition to the free parameters to be estimated from the observed case data, our models also 323 

include a number of fixed parameters, shown in Table 1, whose values can be inferred directly 324 

from previous knowledge or available information. As mentioned earlier, we chose 𝜏 = 61 days 325 

and 𝜁 = 12 weeks because those points in time at Harvard and OSU correspond to the introduction 326 

of the interventions that we hypothesized to be impactful in the dynamics of the respective 327 

outbreaks. Dates t0, t1, and t2 for the spring and summer vacations at Harvard are available online 328 

(31). We set the rate between the exposed and infectious classes and the recovery rate to 𝜎 = K
Ke

  329 

and 𝛾 = K
f
, respectively, since the average latent period and recovery time for mumps are known 330 

to be 𝜎JK = 17 days and 𝛾JK = 5 days (6). Finally, we set the effective population size at Harvard 331 

𝑁" = 20,000 × 0.53 = 10,600  people based on records of Harvard’s enrollment and 332 
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employment, and Grad and Lewnard estimation of susceptibility to mumps among college-age 333 

adults due to immunity waning (6). Similarly, we use an effective population for OSU given by 334 

𝑁- = 60,000 × 0.53 = 31,800, leveraging the total enrollment for the 2013-2014 academic year 335 

reported in OSU’s statistics website (32). 336 

 337 

Symbol Description Value Units Source 
𝜏 Date of intervention at Harvard 61 day Harvard records on interventions (19) 

t0, t1, t2 Vacation dates at Harvard, 2015-2016 
academic year 

26, 34, 
100 

day Harvard archived academic calendar 
(31) 

𝜁 Date of intervention at OSU 12 week  
𝜎JK Duration of mumps latent period 17	 day Lewnard and Grad (6)  
𝛾JK Duration of mumps recovery period 5 day Lewnard and Grad (6) 
𝑁"	 Effective population at Harvard 10,600	 — Harvard records on population size 

(20) and mumps susceptibility among 
college-aged individuals (6) 

𝑁- Effective population at OSU 31,800 — OSU’s statistical summary (32) and 
mumps susceptibility among college-
aged individuals (6) 

 338 

 339 

2.4 Maximum likelihood estimation of free parameters 340 

In order to obtain estimates of the free parameters in our models, we pick the parameter values that 341 

maximize the log likelihood of the observed data given each model. Within the POMP framework, 342 

we can perform fast maximum likelihood estimation (MLE) via Sequential Monte Carlo (SMC) 343 

techniques (28). SMC allows us to calculate the likelihood of the data more efficiently by applying 344 

the Markov property to generate paths in parameter space that sample the likelihood surface. We 345 

performed 100 searches from random parameter guesses, each converging to a unique value, and 346 

we then took the maximum over the 100 runs the final point estimates. We did this using the pomp 347 

package version 2.8 (33) for the R statistical software version 3.6.1 (34). In order to calculate the 348 

confidence intervals for each parameter, we selected the top quartile from the set of parameters 349 

Table 1: List of fixed parameters used in mumps transmission model for Harvard and OSU 
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values obtained in the SMC runs, and applied the adjusted bootstrap percentile (BCa) method (35) 350 

with 10,000 bootstrap replicates using the function boot.ci in version 1.3.20 of package boot for R 351 

(36). 352 

 353 

2.5 Intervention analysis 354 

Finally, we performed an analysis of the parameters q and w, which respectively quantify the effect 355 

of what we consider to be the defining intervention at Harvard (aggressive diagnosis) occurring 356 

around day 61 of the outbreak, and the self-isolation awareness campaign at OSU during March 357 

2014. This could allow us to understand to what extent these interventions made a difference on 358 

the trajectory of the outbreak. First, we compared the scenario with the interventions versus a 359 

scenario without the interventions. Controlling for all other parameters, we run two sets of 360 

simulations at the MLEs, with 200 simulations each. The first set of simulations fixed q and w at 361 

the value obtained from MLE, while the second set of simulations set q and w to 1, assuming that 362 

no interventions occurred around day 61 at Harvard and by week 12 at OSU. We then compared 363 

the cumulative number of cases over time for these two sets of simulations, generating a 95% 364 

percentile range from all the simulations in each set. Second, we used this method to determine if 365 

administering the interventions earlier could have lowered the number of cases. For Harvard, we 366 

let the day of the intervention take on values between 1 and 60. Subsequently, we ran simulations 367 

for each of these 60 cases, pulled the final outbreak size from the median simulation, and calculated 368 

the reduction in outbreak size. We applied the same procedure for OSU, in this case varying the 369 

day of intervention between 1 and 11 and calculating the corresponding final outbreak sizes.  370 
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3. RESULTS 371 

3.1 Optimal Parameters of Harvard and OSU Outbreaks 372 

The MLEs of the parameters provide insight into the key characteristics of Harvard’s and OSU’s 373 

outbreak. In general, we observe very good agreement between the observed cases and the 374 

simulated outbreaks using the optimal parameters. The effective reproduction number also reflects 375 

the effects of the interventions at Harvard and OSU in way that’s consistent with our initial 376 

modeling assumptions. The bootstrap sampling method results in narrow 95% CIs.  377 

 378 

3.1.1 Maximum Likelihood Estimates for Harvard 379 

The results are shown in Table 2. Notably, the baseline removal rate 𝛾" is quite high, indicating 380 

that the initial diagnosis protocol was quite effective at identifying and removing infected students 381 

from the population, but it was further increased after day 61. The reporting rate 𝜌"  is also 382 

remarkably high, which suggests that HUHS was able to identify most of the cases circulating at 383 

Harvard. 384 

 385 

Symbol Description Point estimate 95% CI Units Source 
𝛽" 	 Baseline transmission rate 1.39 (1.29, 1.42) day-1 MLE 
𝛾"  Baseline removal rate 0.85 (0.81, 0.88) day-1 MLE 
p	 Decrease in infection due to vacation 0.11 (0.09, 0.15)  MLE 
q Increase in removal rate  2.8 (2.25, 2.52) — MLE 
𝜌" Proportion of infections reported 0.97 (0.92, 0.95) — MLE 
𝜓" 	 Overdispersion parameter 0.54	 (0.49, 0.53)  — MLE 
𝑅V(𝑡) Effective reproduction number 1.63 normal term 

0.18 during vacation 
0.58 after intervention 

— — Calculated as T(F)
U(F)

 

 386 

 387 
Table 2: List of parameters in the Harvard model that were obtained by MLE or calculated 
using the estimated parameters. 
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We ran stochastic simulations of Harvard’s outbreak using the parameter values from Table 388 

2. Figure 3 shows consistent results across simulations: shortly after day 61 (the time of the primary 389 

intervention), we consistently see a decrease in the number of observed cases. The variability in 390 

the simulations can partly be attributed to the randomness in the stochastic model as well as the 391 

over-dispersion parameter. Variability can also be explained by the MLE of the basic reproduction 392 

number being below 2, which together with the stochasticity built into the simulations, can result 393 

in absence of outbreak, such as in simulation 8, or much smaller outbreaks like in 5, 7, and 9.  394 

The MLE of the parameters, which we obtained by picking the maximum of the log 395 

likelihood over the 100 SMC runs, falls outside the bootstrap 95% CI for q, 𝜌", and	𝜓". However, 396 

the distance between the MLE and the boundary of the CIs is small in these three cases, and we 397 

also run simulations using the bootstrap mean, and all results remained unchanged. 398 

 399 

3.1.2 Maximum Likelihood Estimates for OSU 400 

The MLEs of the parameters for the OSU model, as well as derived quantities, are shown in Table 401 

3. Here we can see an initial reproductive number of almost 6, much higher than Harvard’s. 402 

However, it eventually becomes lower than 1, which supports our modeling assumptions of an 403 

awareness campaign from OSU, perhaps helped by news reporting about the outbreak, that lead to 404 

effective self-isolation of individuals. 405 

Symbol Description Point estimate 95% CI Units Source 

𝛽- 	 Transmission rate constant 1.19 (1.19, 1.2) day-1 MLE 
w Decrease in infection due to self-isolation 0.16 (0.157, 1.16) — MLE 
𝜌-  Proportion of infections reported 0.03 (0.029, 0.03) — MLE 
𝜓- 	 Overdispersion parameter 0.38 (0.376, 0.38) — MLE 
𝑅V(𝑡) Effective reproduction number    5.95 initial 

   0.95 after advisory 
 — Calculated as  T(F)

U(F)
 

 406 

 407 

Table 3: List of parameters in the OSU model that obtained by MLE or calculated using 
the estimated parameters. 
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As with Harvard, we run stochastic simulations of OSU’s outbreak using the parameter values 408 

from Table 3. The simulated outbreaks are shown in Figure 4, and they replicate the real curve 409 

with some random variation due to the stochastic nature of the model. 410 

 411 

 412 

 413 
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Figure 3: Nine simulations of the final Harvard model evaluated at the maximum likelihood estimates. 
Comparisons to the actual data show that many of the simulations (particularly Simulation 1, 2, 3, and 
6) have similar patterns that mirror the shape curve for the observed data.  

Figure 8: Nine simulations of the final OSU model evaluated at the maximum likelihood estimates. All 
of them follow the observed data quite closely. 
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3.2 Earlier intervention decreases outbreak size at Harvard and OSU 414 

The results from the intervention analysis for Harvard and OSU is depicted in Figure 5. By the 415 

final day of the Harvard outbreak (day 130), the simulations without the intervention on day 61 416 

yielded outbreak sizes that were up to four times the size of the actual outbreak (Figure 5A). These 417 

results also indicate that the outbreak would have lasted much longer, if not for these vigilance-418 

increasing strategies. By varying the day of the intervention from 1 to 61, we also obtained a linear 419 

regression between day of intervention and reduction of the outbreak (Figure 5C). The fitness of 420 

the regression is very high (R2=0.96, P<10-9), and quick inspection of the plot reveals that if the 421 

new diagnosis protocol had been implemented within the first 10 days of the outbreak, then no 422 

more than 50 students would have been infected in total at Harvard.  423 

For OSU we observe similar trends. Lack of intervention on week 12 could have resulted 424 

in an outbreak twice as large (Figure 5B). The outbreak size as a function of the intervention week 425 

also shows a strong dependency, but in this case non-linear and best fit with a sigmoid function of 426 

the form 1/(1+eweek-12). Using this transformation, the fit is also very high (R2=0.63, P<0.005), and 427 

we can conclude that intervening earlier would have had a major effect as well: if the awareness 428 

campaigns prompting students to self-isolate had started around week 5 or 6 (rather than week 12), 429 

then it appears likely that the outbreak could have been completely eradicated. 430 
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 431 

 432 

 433 

 434 

Figure 5: Panels A and B show the comparison of the cumulative number of cases over time for the 
observed Harvard and OSU data and the range of cases (95% percentile of the runs) in simulations with 
and without interventions, with dotted lines representing the timing of the interventions in each school 
(panels A and B). In panels C and D, the plots show the percentage we expect outbreak size to decrease by 
if the date of intervention had been moved up. There is a significant linear relationship between the time 
and percentage reduction in the case of Harvard, as well as a significant relationship after doing a sigmoid 
transformation of the time variable in the case of OSU. 
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4. DISCUSSION 435 

4.1 Parameter interpretation 436 

The MLEs give us insight into characteristics of the mumps outbreaks at Harvard University in 437 

2016 and Ohio State University in 2014, as measured by their effective reproduction numbers 𝑅V, 438 

intervention parameters q and w, rates of removal 𝛾 , reporting rates 𝜌 , and overdispersion 439 

parameters 𝜓 . At Harvard, 𝑅V  during normal class term was 1.63, which indicates that the 440 

outbreak was growing, even though testing and isolation by HUHS resulted in a baseline removal 441 

time of only  K
l.mf

= 1.2  days. This points to the effectiveness of the quarantine system 442 

implemented by HUHS. However, a small fraction of false negative cases still managed to escape 443 

quarantine and keep the virus under circulation, as indicated by the reproduction number being 444 

higher than 1. The reproduction number goes below 1 during the spring break, which is reasonable 445 

given that most students are away due to the residential nature of the Harvard campus. However, 446 

transmission resumes after the break. It is only after the implementation of the new diagnosis 447 

protocol on day 61, which required isolation if clinical symptoms were present, that had a dramatic 448 

effect on the detection and isolation of positive cases, effectively taking the removal time to less 449 

than 1 day and the reproductive number below 0.6. Thanks to this key intervention, it was possible 450 

to end the outbreak before the beginning of the summer recess.  451 

The estimate of 𝜌 is 0.96, which implies the reporting rate at Harvard was remarkable. 452 

Reasons include the email awareness campaign, a community network – from resident deans to 453 

athletic coaches – reporting students and employees who seemed at-risk, and more aggressive 454 

diagnoses, particularly towards the end of the outbreak. The estimate for 𝜓 is 0.54, suggesting that 455 

the actual data has more variability than expected under the assumed distribution. If 𝜓 had been 456 
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approximately 0, the variance in our measurement model would have simplified to the variance 457 

for a binomial distribution. However, because the 95% confidence interval is (0.5, 0.56) and thus 458 

does not include 0, we justify the modelling decision of representing the number of cases as an 459 

over-dispersed binomial. Demographic and environmental stochasticity (e.g.: a student in the 460 

midst of midterm season may be less likely to report symptoms), as well as the interventions 461 

themselves (e.g.: reporting may increase temporarily after an awareness email) can result in over-462 

dispersion in the number of reported cases.  463 

In the case of OSU, we obtain a much higher reproduction number at the beginning of the 464 

outbreak, near 6, and a very low reporting rate of 3%. Before discussing these results any further, 465 

it is important to keep in mind that we extrapolated OSU cases from state-level reports by the CDC. 466 

Furthermore, we did not have direct access to information about the containment interventions 467 

adopted by the school, as we did for Harvard, so we were only able to make educated guesses 468 

about those possible interventions based on information we found on the web. However, the 469 

internal consistency of the resulting model and the good agreement with the available data, gives 470 

weight to these results. Within our OSU model, we can conclude that self-isolation of students 471 

motivated by the advisories posted by OSU had the intended effect of stopping the outbreak. The 472 

effective reproduction number dips below 1 after March, which is when the awareness campaign 473 

appeared to have started, and also when the outbreak gained local and national prominence due to 474 

news reporting. The low reporting rate is closer to population-wide estimates of this parameter (6), 475 

and is also compatible with a large, non-residential campus where it is harder to reach out to 476 

students as they live scattered around the city. A consequence of this number is that the outbreak 477 

should have been 30 times larger than observed. Since the observed case count is approximately 478 

500, it follows that the total number of cases could have reached 15,000 individuals, which is still 479 
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possible given that the number of susceptible within the school’s student population is over 30,000. 480 

This is still a very significant number, and it is possible that a large majority of these potential 481 

15,000 cases only had mild symptoms. Furthermore, the modeling approximation of closed SEIR 482 

compartments is probably less accurate for OSU given its non-residential nature: students there 483 

have more opportunity to interact with individuals outside of their school, resulting in additional 484 

transmissions that are not captured by our model, and thus affecting the interpretation of 485 

parameters such as the reporting rate. 486 

  487 

4.2 Effect of strict isolation policy vs self-isolation 488 

Arguably the most critical intervention by HUHS was the isolation requirement for confirmed and 489 

probable mumps cases. By comparing the Harvard and OSU outbreaks, we conclude that the 490 

isolation policy led to a smaller average infectious period for Harvard patients. The MLEs for 491 

Harvard and OSU are different for several parameters, most notably basic reproduction number, 492 

reporting rate, and rate of transition from the infectious to removed class. Firstly, OSU’s basic 493 

reproduction number is over four times that of Harvard. Harvard’s isolation policy best explains 494 

this difference because it physically prevented infectious persons from causing multiple secondary 495 

infections, thus suppressing the growth of the outbreak. Secondly, OSU’s reporting rate is 496 

extremely low, at approximately 3% compared to Harvard’s 96%. We do not have access to OSU’s 497 

diagnostic procedures nor do we know the extent of their email awareness campaign, but we 498 

hypothesize that a lack of one or both of these may explain at least a portion of the dissimilarity in 499 

the two schools’ reporting rates. However, the decrease in OSU’s transmission rate we observe in 500 

our model post-intervention is still extremely significant with a sixth-fold reduction, and would 501 

have been a major contributor to help containing the outbreak there. This suggests that compliance 502 
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with easy-to-implement measures such as self-isolation could go a long way towards outbreak 503 

mitigation. Of course, high compliance is contingent on effective educational and awareness 504 

campaigns by the health authorities. 505 

 506 

4.3 Implications of intervention analysis 507 

With the benefit of our intervention analysis, we conclude that aggressive diagnoses decreased the 508 

size of the Harvard outbreak by approximately three-fourths. Furthermore, for every day of 509 

intervention delay, we estimate that the outbreak size would have increased by 1.6 percentage 510 

points, extrapolating the regression line in Figure 5C. Likewise, self-isolation prompted by health 511 

advisories posted by the university reduced the size of the OSU outbreak by half. Given the non-512 

linear dependency between change in outbreak size and timing of intervention (Figure 5D), the 513 

increase would have been even larger in that outbreak. Interestingly, this dependency also implies 514 

that self-isolation in the first weeks of the outbreak can be enough to completely stop spread.  515 

Clearly, a limitation of this analysis is the assumption that everything remains the same 516 

while changing the time of the intervention under consideration. In reality, other factors might 517 

come into play if the outbreak becomes larger or smaller, which in turn could affect the dynamics 518 

of the outbreak as well as the interventions themselves. However, this analysis still provides a 519 

useful hypothetical quantification of the effect of accelerating or delaying interventions designed 520 

to contain the spread of an outbreak and here, as expected, the sooner the interventions are 521 

introduced, the better the outcomes in terms of outbreak size. Of course, existing constraints in the 522 

school’s health system could impede fast interventions. In such situations, our method can be 523 
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useful to perform a cost-benefit analysis of how late an intervention could be made to still have a 524 

significant reduction in the health burden caused by the disease. 525 

 526 

4.4 Conclusions 527 

We constructed and parametrized a POMP model for the transmission of mumps on college 528 

campuses. Unlike other models of infectious disease, which opt for deterministic representations, 529 

our stochastic model is adaptable to small populations and accounts for the noisiness and 530 

incompleteness of case data. Moreover, it incorporates parameters that measures the effect of 531 

interventions implemented after a given point in time. Given the worldwide crisis caused by the 532 

COVID-19 pandemic, such models can be useful to quickly evaluate interventions designed to 533 

contain the spread of SARS-CoV-2 once schools reopen in the U.S. and around the world. 534 

We compared an outbreak at Harvard University, with its various intervention strategies, 535 

to another university outbreak of comparable reported cases at OSU. Importantly, while most 536 

literature today focuses on mumps prevention – such as administering third MMR doses to college-537 

age students – this paper provides quantitative backing for more immediate and less costly 538 

approaches to mitigating the spread of mumps and other infectious diseases, most notably COVID-539 

19. Even with widespread availability of vaccines, outbreaks of highly transmissible diseases are 540 

still a reality, as mumps exemplifies very clearly. In particular, requiring strict isolation if any 541 

symptoms of the disease are presented would significantly reduce transmission and ultimately the 542 

size of the outbreak. Effective awareness campaigns that lead to self-isolation of infected 543 

individuals with mild symptoms can also have a significant effect in containing the spread of 544 

disease and limiting the risk for vulnerable populations. 545 
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4.4 Limitations 546 

Some of our conclusions are likely affected by confounding factors that we cannot control for in 547 

this analysis. For example, the outbreak at Harvard started to subside in late April, not long before 548 

students finish the semester and leave campus, which would decrease the number of potential 549 

infections. The most promising method to determine the exact effect of isolation strategies is 550 

through a randomized control trial. Regarding the differences between OSU and Harvard 551 

parameters, we must be cautious in taking the OSU estimates at face value. Given that the OSU 552 

data consists of weekly reports rather than daily reports of cases, we should expect the estimates 553 

for the parameters to be less accurate. Furthermore, the cases are not solely linked to the university. 554 

Numerous cases in the data occurred in the greater Columbus area, suggesting that the parameter 555 

estimates do not only account for the dynamics of mumps on campus. Lastly, major differences in 556 

housing and campus characteristics could have also contributed to differences between the two 557 

schools; for instance, OSU’s population size is three times that of Harvard, and OSU has larger 558 

dorms than Harvard’s houses. Interventions used at Harvard simply may not have worked as well 559 

at OSU. We were fortunate to have direct access to school administrators who were involved in 560 

the response to the 2016 outbreak to discuss HUHS interventions in detail, but we were not able 561 

to get the same level of detail for OSU’s interventions, as discussed in the main text. More broadly, 562 

lack of publicly available datasets, with the exception of CDC reports on OSU’s outbreak, is a 563 

serious impediment to perform these analyses. Therefore, it will be essential that universities 564 

across the US and globe actively share data for comparative analysis, to identify the best 565 

intervention strategies to protect college campuses from outbreaks, especially in the post-COVID-566 

19 world.  567 

 568 
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