13 research outputs found

    RNase L Mediates Transient Control of The Interferon Response Through Modulation of The Double-stranded RNA-Dependent Protein Kinase PKR

    Get PDF
    The transient control of diverse biological responses that occurs in response to varied forms of stress is often a highly regulated process. During the interferon (IFN) response, translational repression due to phosphorylation of eukaryotic initiation factor 2α, eIF2α, by the double-stranded RNA-dependent protein kinase, PKR, constitutes a means of inhibiting viral replication. Here we show that the transient nature of the IFN response against acute viral infections is regulated, at least in part, by RNase L. During the IFN antiviral response in RNase L-null cells, PKR mRNA stability was enhanced, PKR induction was increased, and the phosphorylated form of eIF2α appeared with extended kinetics compared with similarly treated wild type cells. An enhanced IFN response in RNase L-null cells was also demonstrated by monitoring inhibition of viral protein synthesis. Furthermore, ectopic expression of RNase L from a plasmid vector prevented the IFN induction of PKR. These results suggest a role for RNase L in the transient control of the IFN response and possibly of other cytokine and stress responses

    RNase L Mediates Transient Control of The Interferon Response Through Modulation of The Double-stranded RNA-Dependent Protein Kinase PKR

    Get PDF
    The transient control of diverse biological responses that occurs in response to varied forms of stress is often a highly regulated process. During the interferon (IFN) response, translational repression due to phosphorylation of eukaryotic initiation factor 2α, eIF2α, by the double-stranded RNA-dependent protein kinase, PKR, constitutes a means of inhibiting viral replication. Here we show that the transient nature of the IFN response against acute viral infections is regulated, at least in part, by RNase L. During the IFN antiviral response in RNase L-null cells, PKR mRNA stability was enhanced, PKR induction was increased, and the phosphorylated form of eIF2α appeared with extended kinetics compared with similarly treated wild type cells. An enhanced IFN response in RNase L-null cells was also demonstrated by monitoring inhibition of viral protein synthesis. Furthermore, ectopic expression of RNase L from a plasmid vector prevented the IFN induction of PKR. These results suggest a role for RNase L in the transient control of the IFN response and possibly of other cytokine and stress responses

    HPC1/RNASEL

    No full text

    RNase L Plays a Role in the Antiviral Response to West Nile Virus

    No full text
    Alleles at the Flv locus determine disease outcome after a flavivirus infection in mice. Although comparable numbers of congenic resistant and susceptible mouse embryo fibroblasts (MEFs) are infected by the flavivirus West Nile virus (WNV), resistant MEFs produce ∼100- to 150-fold lower titers than susceptible ones and flavivirus titers in the brains of resistant and susceptible animals can differ by >10,000-fold. The Flv locus was previously identified as the 2′-5′ oligoadenylate synthetase 1b (Oas1b) gene. Oas gene expression is up-regulated by interferon (IFN), and after activation by double-stranded RNA, some mouse synthetases produce 2-5A, which activates latent RNase L to degrade viral and cellular RNAs. To determine whether the lower levels of intracellular flavivirus genomic RNA from resistant mice detected in cells at all times after infection were mediated by RNase L, RNase L activity levels in congenic resistant and susceptible cells were compared. Similar moderate levels of RNase L activation by transfected 2-5A were observed in both types of uninfected cells. After WNV infection, the mRNAs of IFN-β and three Oas genes were up-regulated to similar levels in both types of cells. However, significant levels of RNase L activity were not detected until 72 h after WNV infection and the patterns of viral RNA cleavage products generated were similar in both types of cells. When RNase L activity was down-regulated in resistant cells via stable expression of a dominant negative RNase L mutant, ∼5- to 10-times-higher yields of WNV were produced. Similarly, about ∼5- to 10-times-higher virus yields were produced by susceptible C57BL/6 RNase L(−/−) cells compared to RNase L(+/+) cells that were either left untreated or pretreated with IFN and/or poly(I) · poly(C). The data indicate that WNV genomic RNA is susceptible to RNase L cleavage and that RNase L plays a role in the cellular antiviral response to flaviviruses. The results suggest that RNase L activation is not a major component of the Oas1b-mediated flavivirus resistance phenotype

    Human Telomerase RNA Degradation by 2\u27-5\u27-Linked Oligoadenylate Antisense Chimeras in a Cell-Free System, Cultured Tumor Cells, and Murine Xenograft Models

    No full text
    Ribonuclease L (RNase L) is a latent single-stranded RNA-directed endoribonuclease that is activated on binding to short 2\u27-5\u27-linked oligoadenylates (2-5A), a feature that has led to its use in antisense therapeutic strategies. By attaching a 2-5A moiety to the 5\u27 terminus of standard antisense oligonucleotides, it is possible to activate RNase L and guide it to specific RNAs for degradation. These 2-5A antisense chimeras have been used successfully to target a variety of cellular and viral RNAs. Telomerase is a nuclear ribonucleoprotein complex that elongates telomeric DNA and contributes to cellular immortalization. Telomerase is composed of a protein catalytic subunit and an RNA (hTR or TERC) component, both of which are critical for holoenzyme activity. We describe the characterization of 2-5A antisense chimeras targeting the hTR component of telomerase (2-5A antihTR). Newly designed 2-5A anti-hTR molecules were assayed for their abilities to selectively degrade hTR in a cell-free system. Of the five chimeras tested, one (RBI011) degraded hTR by 97%, and two others (RBI013 and RBI009) were also found to be highly active (73-76% degradation). The ability of transfected RBI011, and its homolog RBI254, to degrade hTR in cultured tumor cells was assessed by real-time RT-PCR. In these studies, RBI011 and RBI254 effectively degraded hTR in a variety of hTR-positive tumor cell lines. The hTR degradation studies were extended to growth assays to determine whether hTR ablation affected tumor cell viability or proliferation. RBI254 treatment resulted in reduced tumor cell viability over the course of 4-day growth assays, effects that were augmented by cotreatment with interferon-beta. To extend these results to an in vivo system, nude mice were implanted subcutaneously or orthotopically with hTR-positive prostate tumors and treated with RBI254. RBI254-treated mice exhibited enhanced tumor cell apoptosis and reduced tumor volume as compared with controls. These findings demonstrated the effectiveness of highly active forms of 2-5A antisense against hTR, and also highlight the usefulness of the cell-free system in predicting chimera efficacy before to inception of cell-based and in vivo studies

    A Phylogenetically Conserved RNA Structure in the Poliovirus Open Reading Frame Inhibits the Antiviral Endoribonuclease RNase Lâ–¿

    No full text
    RNase L is an antiviral endoribonuclease that cleaves viral mRNAs after single-stranded UA and UU dinucleotides. Poliovirus (PV) mRNA is surprisingly resistant to cleavage by RNase L due to an RNA structure in the 3CPro open reading frame (ORF). The RNA structure associated with the inhibition of RNase L is phylogenetically conserved in group C enteroviruses, including PV type 1 (PV1), PV2, PV3, coxsackie A virus 11 (CAV11), CAV13, CAV17, CAV20, CAV21, and CAV24. The RNA structure is not present in other human enteroviruses (group A, B, or D enteroviruses). Coxsackievirus B3 mRNA and hepatitis C virus mRNA were fully sensitive to cleavage by RNase L. HeLa cells expressing either wild-type RNase L or a dominant-negative mutant RNase L were used to examine the effects of RNase L on PV replication. PV replication was not inhibited by RNase L activity, but rRNA cleavage characteristic of RNase L activity was detected late during the course of PV infection, after assembly of intracellular virus. Rather than inhibiting PV replication, RNase L activity was associated with larger plaques and better cell-to-cell spread. Mutations in the RNA structure associated with the inhibition of RNase L did not affect the magnitude of PV replication in HeLa cells expressing RNase L, consistent with the absence of observed RNase L activity until after virus assembly. Thus, PV carries an RNA structure in the 3C protease ORF that potently inhibits the endonuclease activity of RNase L, but this RNA structure does not prevent RNase L activity late during the course of infection, as virus assembly nears completion

    2-5A Antisense Directed against Telomerase RNA Produces Apoptosis in Ovarian Cancer Cells

    No full text
    Objective. RNase L is converted to an active form upon binding short 2′,5′-oligoadenylates (2-5A). To direct RNase L to an RNA target, 2-5A is attached to an antisense oligonucleotide (2-5A antisense). This chimera can be directed against telomerase—an RNA–protein complex that elongates telomeric DNA and is involved in cellular immortalization. Our objective is to investigate the effect of 2-5A antisense by targeting telomerase RNA (hTR) in the ovarian cancer cell line, HEY-1B. Methods. Baseline RNase L levels and telomerase activities were measured in both HEY-1B and normal ovarian epithelial cells (NOE). Cells were treated daily with chimeric oligonuclotides (ODN) directed against four different hTR sites, or control ODNs including nonchimeric antisense, 2-5A fused to a mismatched sequence, or inactive 2-5A fused to antisense. At 48 h, apoptosis was evaluated using the TUNEL assay. After six daily ODN administrations, telomerase activity was redetermined, and at 7 days viability counts were obtained. Results. Both cell lines expressed similar levels of RNase L. Hey-1B displayed telomerase activity while NOE did not. After 7 days of transfection, 2-5A antisense ODNs caused profound cell death in the HEY-1B cells, but not in the NOE cells. This effect was seen regardless of hTR target site, and ODN controls showed no significant decrease in cell viability in either cell line. HEY1B cells treated with 2-5A antisense against hTR showed a decrease in telomerase activity and a profound induction of programmed cell death. Conclusions. The results suggest that 2-5A antisense directed against telomerase RNA results in apoptotic cell death in ovarian cancer cells, but not normal ovarian epithelial cells. The 2-5A antisense strategy may hold a considerable advantage over the conventional antisense approach in targeting cancer-causing genes

    Activation of p38 Mitogen-Activated Protein Kinase and c-Jun NH(2)-Terminal Kinase by Double-Stranded RNA and Encephalomyocarditis Virus: Involvement of RNase L, Protein Kinase R, and Alternative Pathways

    Get PDF
    Double-stranded RNA (dsRNA) accumulates in virus-infected mammalian cells and signals the activation of host defense pathways of the interferon system. We describe here a novel form of dsRNA-triggered signaling that leads to the stimulation of the p38 mitogen-activated protein kinase (p38 MAPK) and the c-Jun NH(2)-terminal kinase (JNK) and of their respective activators MKK3/6 and SEK1/MKK4. The dsRNA-dependent signaling to p38 MAPK was largely intact in cells lacking both RNase L and the dsRNA-activated protein kinase (PKR), i.e., the two best-characterized mediators of dsRNA-triggered antiviral responses. In contrast, activation of both MKK4 and JNK by dsRNA was greatly reduced in cells lacking RNase L (or lacking both RNase L and PKR) but was restored in these cells when introduction of dsRNA was followed by inhibition of ongoing protein synthesis or transcription. These results are consistent with the notion that the role of RNase L and PKR in the activation of MKK4 and JNK is the elimination, via inhibition of protein synthesis, of a labile negative regulator(s) of the signaling to JNK acting upstream of SEK1/MKK4. In the course of these studies, we identified a long-sought site of RNase L-mediated cleavage in the 28S rRNA, which could cause inhibition of translation, thus allowing the activation of JNK by dsRNA. We propose that p38 MAPK is a general participant in dsRNA-triggered cellular responses, whereas the activation of JNK might be restricted to cells with reduced rates of protein synthesis. Our studies demonstrate the existence of alternative (RNase L- and PKR-independent) dsRNA-triggered signaling pathways that lead to the stimulation of stress-activated MAPKs. Activation of p38 MAPK (but not of JNK) was demonstrated in mouse fibroblasts in response to infection with encephalomyocarditis virus (ECMV), a picornavirus that replicates through a dsRNA intermediate. Fibroblasts infected with EMCV (or treated with dsRNA) produced interleukin-6, an inflammatory and pyrogenic cytokine, in a p38 MAPK-dependent fashion. These findings suggest that stress-activated MAPKs participate in mediating inflammatory and febrile responses to viral infections
    corecore