6 research outputs found

    Neurological disease may precede lymphadenopathies in Actinomyces europaeus infection

    No full text
    Actinomyces species are part of the commensal flora of the mucous membranes of the oropharynx, gastrointestinal tract and female genital tract. Actinomyces europaeus is a short, nonmotile, facultative anaerobic rod first described in 1997, susceptible in vitro to a wide range of b-lactam antibiotics which are regarded as first choice. In this report we described the case of A. europaeus infection in a young female patient admitted to Intensive Care Unit and the possible damage of vascular endothelium due to a chronic progressive actinomycosis that at first involved neck soft tissue, then cervical lymphnodes, and finally extended to the vascular structure. Keywords: Actinomyces, Actinomycosis, Vascular infections, Intensive care unit, Vasculitis, Neurological symptom

    Outbreak of Brucella melitensis infection in Eastern Sicily: risk factors, clinical characteristics and complication rate

    No full text
    Brucellosis is one of the most common zoonoses in the world, especially in Southern Italy, where many cases are still recorded every year. 128 cases of brucellosis were observed in Messina (Sicily) in 2016, representing a tenfold increase in the number of cases of brucellosis expected. The aim of this multicenter retrospective study was to analyze clinical and microbiological aspects of a brucellosis outbreak in the province of Messina in 2016, the incidence of its complications and the treatment combinations applied. The principal transmission route was through the ingestion of unpasteurized fresh cheese. The mean latency period between the onset of the symptoms and diagnosis was 35.58\ub142.75 days. A late diagnosis increases the risk of developing complications. Drug-resistant strains of B. melitensis to Trimethoprim/ Sulfamethoxazole and Ciprofloxacin were found in blood cultures of 58.4% patients. Brucellosis is still present in Sicily. A diagnostic delay predisposes to complications requiring prolonged therapies. The finding of Brucella melitensis strains resistant to the most widespread treatments is worrisome and needs further investigation. Moreover, the use of alternative combination antibiotic therapy is recommended

    Prevalence of Single and Multiple Natural NS3, NS5A and NS5B Resistance-Associated Substitutions in Hepatitis C Virus Genotypes 1-4 in Italy

    Get PDF
    Natural resistance-associated substitutions (RASs) are reported with highly variable prevalence across different HCV genotypes (GTs). Frequency of natural RASs in a large Italian real-life cohort of patients infected with the 4 main HCV-GTs was investigated. NS3, NS5A and NS5B sequences were analysed in 1445 HCV-infected DAA-naïve patients. Sanger-sequencing was performed by home-made protocols on 464 GT1a, 585 GT1b, 92 GT2c, 199 GT3a, 16 GT4a and 99 GT4d samples. Overall, 20.7% (301/1455) of patients showed natural RASs, and the prevalence of multiclass-resistance was 7.3% (29/372 patients analysed). NS3-RASs were particularly common in GT1a and GT1b (45.2-10.8%, respectively), mainly due to 80K presence in GT1a (17%). Almost all GTs showed high prevalence of NS5A-RASs (range: 10.2-45.4%), and especially of 93H (5.1%). NS5A-RASs with fold-change >100x were detected in 6.8% GT1a (30H/R-31M-93C/H), 10.3% GT1b (31V-93H), 28.4% GT2c (28C-31M-93H), 8.5% GT3a (30K-93H), 45.5% GT4a (28M-30R-93H) and 3.8% GT4d (28V-30S-93H). Sofosbuvir RAS 282T was never detected, while the 159F and 316N RASs were found in GT1b (13.4-19.1%, respectively). Natural RASs are common in Italian patients infected with HCV-GTs 1-4. High prevalence of clinically-relevant RASs (such as Y93H) supports the appropriateness of HCV resistance-test to properly guide DAA-based therapy

    Genetic Risk Score for Intracranial Aneurysms: Prediction of Subarachnoid Hemorrhage and Role in Clinical Heterogeneity

    Get PDF
    Background: Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics. Methods: A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study. The metaGRS was validated in combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68 568 controls from the Nordic HUNT population study. Furthermore, we assessed association between the metaGRS and patient characteristics in a cohort of 5560 IA patients. Results: Per SD increase of metaGRS, the hazard ratio for ASAH incidence was 1.34 (95% CI, 1.20-1.51) and the odds ratio for IA presence 1.09 (95% CI, 1.01-1.18). Upon including the metaGRS on top of clinical risk factors, the concordance index to predict ASAH hazard increased from 0.63 (95% CI, 0.59-0.67) to 0.65 (95% CI, 0.62-0.69), while prediction of IA presence did not improve. The metaGRS was statistically significantly associated with age at ASAH (β=-4.82×10-3per year [95% CI, -6.49×10-3to -3.14×10-3]; P=1.82×10-8), and location of IA at the internal carotid artery (odds ratio=0.92 [95% CI, 0.86-0.98]; P=0.0041). Conclusions: The metaGRS was predictive of ASAH incidence, although with limited added value over clinical risk factors. The metaGRS was not predictive of IA presence. Therefore, we do not recommend using this metaGRS in daily clinical care. Genetic risk does partly explain the clinical heterogeneity of IA warranting prioritization of clinical heterogeneity in future genetic prediction studies of IA and ASAH

    Genetic Risk Score for Intracranial Aneurysms: Prediction of Subarachnoid Hemorrhage and Role in Clinical Heterogeneity

    No full text
    Background:Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics. Methods:A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study. The metaGRS was validated in combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68 568 controls from the Nordic HUNT population study. Furthermore, we assessed association between the metaGRS and patient characteristics in a cohort of 5560 IA patients. Results:Per SD increase of metaGRS, the hazard ratio for ASAH incidence was 1.34 (95% CI, 1.20-1.51) and the odds ratio for IA presence 1.09 (95% CI, 1.01-1.18). Upon including the metaGRS on top of clinical risk factors, the concordance index to predict ASAH hazard increased from 0.63 (95% CI, 0.59-0.67) to 0.65 (95% CI, 0.62-0.69), while prediction of IA presence did not improve. The metaGRS was statistically significantly associated with age at ASAH (beta=-4.82x10(-3) per year [95% CI, -6.49x10(-3) to -3.14x10(-3)]; P=1.82x10(-8)), and location of IA at the internal carotid artery (odds ratio=0.92 [95% CI, 0.86-0.98]; P=0.0041). Conclusions:The metaGRS was predictive of ASAH incidence, although with limited added value over clinical risk factors. The metaGRS was not predictive of IA presence. Therefore, we do not recommend using this metaGRS in daily clinical care. Genetic risk does partly explain the clinical heterogeneity of IA warranting prioritization of clinical heterogeneity in future genetic prediction studies of IA and ASAH
    corecore