5 research outputs found

    Glycal Assembly by the in Situ Generation of Glycosyl Dithiocarbamates

    No full text
    Glycal assembly offers an expedient entry into β-linked oligosaccharides, but epoxyglycal donors can be capricious in their reactivities. Treatment with Et<sub>2</sub>NH and CS<sub>2</sub> enables their in situ conversion into glycosyl dithiocarbamates, which can be activated by copper triflate for coupling with complex or sterically congested acceptors. The coupling efficiency can be further enhanced by in situ benzoylation, as illustrated in an 11-step synthesis of a branched hexasaccharide from glucals in 28% isolated yield and just four chromatographic purifications

    Glycosyl Dithiocarbamates: β‑Selective Couplings without Auxiliary Groups

    No full text
    In this article, we evaluate glycosyl dithiocarbamates (DTCs) with unprotected C2 hydroxyls as donors in β-linked oligosaccharide synthesis. We report a mild, one-pot conversion of glycals into β-glycosyl DTCs via DMDO oxidation with subsequent ring opening by DTC salts, which can be generated in situ from secondary amines and CS<sub>2</sub>. Glycosyl DTCs are readily activated with Cu­(I) or Cu­(II) triflate at low temperatures and are amenable to reiterative synthesis strategies, as demonstrated by the efficient construction of a tri-β-1,6-linked tetrasaccharide. Glycosyl DTC couplings are highly β-selective despite the absence of a preexisting C2 auxiliary group. We provide evidence that the directing effect is mediated by the C2 hydroxyl itself via the putative formation of a cis-fused bicyclic intermediate

    Synthesis and DNA/RNA Binding Properties of Conformationally Constrained Pyrrolidinyl PNA with a Tetrahydrofuran Backbone Deriving from Deoxyribose

    No full text
    Sugar-derived cyclic β-amino acids are important building blocks for designing of foldamers and other biomimetic structures. We report herein the first synthesis of a C-activated <i>N</i>-Fmoc-protected <i>trans</i>-(2<i>S</i>,3<i>S</i>)-3-aminotetrahydrofuran-2-carboxylic acid as a building block for Fmoc solid phase peptide synthesis. Starting from 2-deoxy-d-ribose, the product is obtained in a 6.7% overall yield following an 11-step reaction sequence. The tetrahydrofuran amino acid is used as a building block for a new peptide nucleic acid (PNA), which exhibits excellent DNA binding affinity with high specificity. It also shows preference for binding to DNA over RNA and specifically in the antiparallel orientation. In addition, the presence of the hydrophilic tetrahydrofuran ring in the PNA structure reduces nonspecific interactions and self-aggregation, which is a common problem in PNA due to its hydrophobic nature

    Synthesis and Reactivity of 4′-Deoxypentenosyl Disaccharides

    No full text
    4-Deoxypentenosides (4-DPs) are versatile synthons for rare or higher-order pyranosides, and they provide an entry for structural diversification at the C5 position. Previous studies have shown that 4-DPs undergo stereocontrolled DMDO oxidation; subsequent epoxide ring-openings with various nucleophiles can proceed with both <i>anti</i> or <i>syn</i> selectivity. Here, we report the synthesis of α- and β-linked 4′-deoxypentenosyl (4′-DP) disaccharides, and we investigate their post-glycosylational C5′ additions using the DMDO oxidation/ring-opening sequence. The α-linked 4′-DP disaccharides were synthesized by coupling thiophenyl 4-DP donors with glycosyl acceptors using BSP/Tf<sub>2</sub>O activation, whereas β-linked 4′-DP disaccharides were generated by the decarboxylative elimination of glucuronyl disaccharides under microwave conditions. Both α- and β-linked 4′-DP disaccharides could be epoxidized with high stereoselectivity using DMDO. In some cases, the α-epoxypentenosides could be successfully converted into terminal l-iduronic acids via the <i>syn</i> addition of 2-furylzinc bromide. These studies support a novel approach to oligosaccharide synthesis, in which the stereochemical configuration of the terminal 4′-DP unit is established at a post-glycosylative stage
    corecore