30 research outputs found

    Centric diatoms of large rivers and tributaries in Hungary: morphology and biogeographic distribution

    Get PDF
    Centric diatoms of 107 different Hungarian running waters were investigated. Among them the largest was the River Danube, from which more than one hundred plankton samples were analysed by scanning electron microscopy (SEM). Only one sample was analysed from creeks, which were the smallest running waters analysed in this study. There were also channels with slow currents flowing out of rivers or connecting different rivers.In total, 41 centric taxa belonging to 11 genera were found during this study. The average number of taxa found in a single watercourse was 7, the maximum 40 and the minimum 1. Cyclotella meneghiniana was the most frequently encountered species (present in 60% ofsites). Twelve taxa were found in more than 20% of sites, 7 taxa between 5–10% and 6 taxa only in one site

    Evolution of the diatoms: insights from fossil, biological and molecular data

    Get PDF
    Molecular sequence analyses have yielded many important insights into diatom evolution, but there have been few attempts to relate these to the extensive fossil record of diatoms, probably because of unfamiliarity with the data available, which are scattered widely through the geological literature. We review the main features of molecular phylogenies and concentrate on the correspondence between these and the fossil record; we also review the evolution of major morphological, cytological and life cycle characteristics, and possible diatom origins. The first physical remains of diatoms are from the Jurassic, and well-preserved, diverse floras are available from the Lower Cretaceous. Though these are unequivocally identifiable as centric diatoms, none except a possible Stephanopyxis can be unequivocally linked to lineages of extant diatoms, although it is almost certain that members of the Coscinodiscophyceae (radial centrics) and Mediophyceae (polar centrics) were present; some display curious morphological features that hint at an unorthodox cell division mechanism and life cycle. It seems most likely that the earliest diatoms were marine, but recently discovered fossil deposits hint that episodes of terrestrial colonization may have occurred in the Mesozoic, though the main invasion of freshwaters appears to have been delayed until the Cenozoic. By the Upper Cretaceous, many lineages are present that can be convincingly related to extant diatom taxa. Pennate diatoms appear in the late Cretaceous and raphid diatoms in the Palaeocene, though molecular phylogenies imply that raphid diatoms did in fact evolve considerably earlier. Recent evidence shows that diatoms are substantially underclassified at the species level, with many semicryptic or cryptic species to be recognized; however, there is little prospect of being able to discriminate between such taxa in fossil material
    corecore