50 research outputs found

    Kinetic Modeling of Temperature Dependence of TiCl 4

    No full text

    Self-Powered Pressure- and Vibration-Sensitive Tactile Sensors for Learning Technique-Based Neural Finger Skin

    No full text
    Finger skin electronics are essential for realizing humanoid soft robots and/or medical applications that are very similar to human appendages. A selective sensitivity to pressure and vibration that are indispensable for tactile sensing is highly desirable for mimicking sensory mechanoreceptors in skin. Additionally, for a human-machine interaction, output signals of a skin sensor should be highly correlated to human neural spike signals. As a demonstration of fully mimicking the skin of a human finger, we propose a self-powered flexible neural tactile sensor (NTS) that mimics all the functions of human finger skin and that is selectively and sensitively activated by either pressure or vibration stimuli with laminated independent sensor elements. A sensor array of ultrahigh-density pressure (20 × 20 pixels on 4 cm 2 ) of interlocked percolative graphene films is fabricated to detect pressure and its distribution by mimicking slow adaptive (SA) mechanoreceptors in human skin. A triboelectric nanogenerator (TENG) was laminated on the sensor array to detect high-frequency vibrations like fast adaptive (FA) mechanoreceptors, as well as produce electric power by itself. Importantly, each output signal for the SA- and FA-mimicking sensors was very similar to real neural spike signals produced by SA and FA mechanoreceptors in human skin, thus making it easy to convert the sensor signals into neural signals that can be perceived by humans. By introducing microline patterns on the top surface of the NTS to mimic structural and functional properties of a human fingerprint, the integrated NTS device was capable of classifying 12 fabrics possessing complex patterns with 99.1% classification accuracy. © 2019 American Chemical Society.1

    Analysis of Preload-Dependent Reversible Mechanical Interlocking Using Beetle-Inspired Wing Locking Device

    No full text
    We report an analysis of preload-dependent reversible interlocking between regularly arrayed, high aspect ratio (AR) polymer micro- and nanofibers. Such a reversible interlocking is inspired from the wing-locking device of a beetle where densely populated microhairs (termed microtrichia) on the cuticular surface form numerous hair-to-hair contacts to maximize lateral shear adhesion. To mimic this, we fabricate various high AR, vertical micro- and nanopillars on a flexible substrate and investigate the shear locking force with different preloads (0.1–10 N/cm<sup>2</sup>). A simple theoretical model is developed based on the competition between van der Waals (VdW) attraction and deflection forces of pillars, which can explain the preload-dependent maximum deflection, tilting angle, and total shear adhesion force

    Beetle-Inspired Bidirectional, Asymmetric Interlocking Using Geometry-Tunable Nanohairs

    No full text
    We present bidirectional, asymmetric interlocking behaviors between tilted micro- and nanohair arrays inspired from the actual wing locking device of beetles. The measured shear adhesion force between two identical tilted microhair arrays (1.5 μm radius, 30 μm height) turned out to be higher in the reverse direction than that in the angled direction, suggesting that the directionality of beetle’s microtrichia may play a critical role in preventing the elytra from shifting along the middle of insect body. Furthermore, we observed dramatic enhancement of shear adhesion using asymmetric interlocking of various nanohair arrays (tilting angle, δ < 40°). A maximum shear locking force of ∼60 N/cm<sup>2</sup> was measured for the nanohair arrays of 50 nm radius and 1 μm height with a hysteresis as high as ∼3. A simple theoretical model was developed to describe the measured asymmetric adhesion forces and hysteresis, in good agreement with the experimental data

    Nano meets beetles from wing to tiptoe: Versatile tools for smart and reversible adhesions

    No full text
    Nanoscale observation of beetle's attachment systems has revealed various exquisite multiscale architectures for essential functions such as wing fixation, crawling, mating, and protection from predators. Some of these adhesion systems are mediated by liquid secretion (capillary force), whereas some are purely operated by direct interlocking of high-density microfibers or contact of mushroom-like hairy structures (van der Waals force). In this review, we present an overview of recent advances in beetle-inspired, artificial dry and wet adhesives in the context of nanofabrication and material properties. For convenience, the beetle's adhesions from wing to tiptoe are classified into four types: hair interlocking, mushroom-shaped pads, oil-assisted spatula-shaped pads, and claws. After introducing the structural features and functions of these systems, we describe how the current nanofabrication methods can be applied to mimic or exploit the systems. Furthermore, relevant beetle-inspired structural materials, devices (fastener, medical tape, electric connector, etc.) and microrobots are briefly overviewed, which would shed light on future smart, directional and reversible adhesion systems.close

    Fabrication and analysis of enforced dry adhesives with core-shell micropillars

    No full text
    We present a simple method for fabricating robust dry adhesives by coating a soft polydimethyl siloxane (PDMS) thin layer on rigid backbone micropillars of polyurethane acrylate (PUA). These core-shell type micropillars demonstrated enhanced durability both in normal and shear adhesion over more than 100 cycles of attachment and detachment. Relatively strong normal (???11.4 N cm -2) and shear (???15.3 N cm-2) adhesion forces were observed, which were similar to or even larger than those of homogeneous PDMS micropillars. A simple theoretical model based on beam deflection theory was used to explain the experimental results.close6

    Betulinic Acid Suppresses Ovarian Cancer Cell Proliferation through Induction of Apoptosis

    No full text
    Ovarian cancer is one of the leading causes of cancer deaths worldwide in women, and the most malignant cancer among the different gynecological cancers. In this study, we explored potentially anticancer compounds from Cornus walteri (Cornaceae), the MeOH extract of which has been reported to show considerable cytotoxicity against several cancer cell lines. Phytochemical investigations of the MeOH extract of the stem and stem bark of C. walteri by extensive application of chromatographic techniques resulted in the isolation of 14 compounds (1&ndash;14). The isolated compounds were evaluated for inhibitory effects on the viability of A2780 human ovarian carcinoma cells and the underlying molecular mechanisms were investigated. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was employed to assess the anticancer effects of compounds 1&ndash;14 on A2780 cells, which showed that compound 11 (betulinic acid) reduced the viability of these cells in a concentration-dependent manner and had an half maximal (50%) inhibitory concentration (IC50) of 44.47 &mu;M at 24 h. Nuclear staining and image-based cytometric assay were carried out to detect the induction of apoptosis by betulinic acid. Betulinic acid significantly increased the condensation of nuclei and the percentage of apoptotic cells in a concentration-dependent manner in A2780 cells. Western blot analysis was performed to investigate the underlying mechanism of apoptosis. The results indicated that the expression levels of cleaved caspase-8, -3, -9, and Bax were increased in A2780 cells treated with betulinic acid, whereas those of Bcl-2 were decreased. Thus, we provide the experimental evidence that betulinic acid can induce apoptosis in A2780 cells through both mitochondria-dependent and -independent pathways and suggest the potential use of betulinic acid in the development of novel chemotherapeutics for ovarian cancer therapy

    Estrogenic Activity of Mycoestrogen (3&beta;,5&alpha;,22E)-Ergost-22-en-3-ol via Estrogen Receptor &alpha;-Dependent Signaling Pathways in MCF-7 Cells

    No full text
    Armillariella tabescens (Scop.) Sing., a mushroom of the family Tricholomataceae, has been used in traditional oriental medicine to treat cholecystitis, improve bile secretion, and regulate bile-duct pressure. The present study evaluated the estrogen-like effects of A. tabescens using a cell-proliferation assay in an estrogen-receptor-positive breast cancer cell line (MCF-7). We found that the methanol extract of A. tabescens fruiting bodies promoted cell proliferation in MCF-7 cells. Using bioassay-guided fractionation of the methanol extract and chemical investigation, we isolated and identified four steroids and four fatty acids from the active fraction. All eight compounds were evaluated by E-screen assay for their estrogen-like effects in MCF-7 cells. Among the tested isolates, only (3&beta;,5&alpha;,22E)-ergost-22-en-3-ol promoted cell proliferation in MCF-7 cells; this effect was mitigated by the ER antagonist, ICI 182,780. The mechanism underlying the estrogen-like effect of (3&beta;,5&alpha;,22E)-ergost-22-en-3-ol was evaluated using Western blot analysis to detect the expression of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, and estrogen receptor &alpha; (ER&alpha;). We found that (3&beta;,5&alpha;,22E)-ergost-22-en-3-ol induced an increase in phosphorylation of ERK, PI3K, Akt, and ER&alpha;. Together, these experimental results suggest that (3&beta;,5&alpha;,22E)-ergost-22-en-3-ol is responsible for the estrogen-like effects of A. tabescens and may potentially aid control of estrogenic activity in menopause

    Suppression of 6-Hydroxydopamine-Induced Oxidative Stress by Hyperoside Via Activation of Nrf2/HO-1 Signaling in Dopaminergic Neurons

    No full text
    In our ongoing research to discover natural products with neuroprotective effects, hyperoside (quercetin 3-O-galactoside) was isolated from Acer tegmentosum, which has been used in Korean traditional medicine to treat liver-related disorders. Here, we demonstrated that hyperoside protects cultured dopaminergic neurons from death via reactive oxygen species (ROS)-dependent mechanisms, although other relevant mechanisms of hyperoside activity remain largely uncharacterized. For the first time, we investigated the neuroprotective effects of hyperoside on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in neurons, and the possible underlying mechanisms. Hyperoside significantly ameliorated the loss of neuronal cell viability, lactate dehydrogenase release, excessive ROS accumulation and mitochondrial membrane potential dysfunction associated with 6-OHDA-induced neurotoxicity. Furthermore, hyperoside treatment activated the nuclear erythroid 2-related factor 2 (Nrf2), an upstream molecule of heme oxygenase-1 (HO-1). Hyperoside also induced the expression of HO-1, an antioxidant response gene. Remarkably, we found that the neuroprotective effects of hyperoside were weakened by an Nrf2 small interfering RNA, which blocked the ability of hyperoside to inhibit neuronal death, indicating the vital role of HO-1. Overall, we show that hyperoside, via the induction of Nrf2-dependent HO-1 activation, suppresses neuronal death caused by 6-OHDA-induced oxidative stress. Moreover, Nrf2-dependent HO-1 signaling activation represents a potential preventive and therapeutic target in Parkinson&prime;s disease management

    Single-Layer Graphene-Based Transparent and Flexible Multifunctional Electronics for Self-Charging Power and Touch-Sensing Systems

    No full text
    Applications in the field of portable and wearable electronics are becoming multifunctional, and the achievement of transparent electronics extensively expands the applications into devices such as wearable flexible displays or skin-attachable mobile computers. Moreover, the self-charging power system (SCPS) is the core technique for realizing portable and wearable electronics. Here, we propose a transparent and flexible multifunctional electronic system in which both an all-in-one SCPS and a touch sensor are combined. A single-layer graphene (SLG) film was adapted as an electrode for the supercapacitor, touch sensor, and a triboelectric nanogenerator (TENG), thus making an electronic system that is ultrathin, lightweight, transparent, and flexible. Capacitive-type transparent and flexible electronic devices can be simultaneously used as an electrochemical double-layer capacitance-based supercapacitor and as a sensitive, fast-responding touch sensor in a single-device architecture by inserting a separator of polyvinyl alcohol-lithium chloride-soaked polyacrylonitrile electrospun mat on polyethylene naphthalate between two symmetric SLG film electrodes. Furthermore, a transparent all-in-one SCPS was fabricated by laminating a TENG device with a supercapacitor, and high-performance electric power generation/storage capability is demonstrated. © 2019 American Chemical Society.FALS
    corecore