208 research outputs found

    Nonparametric Infinite Horizon Kullback-Leibler Stochastic Control

    Full text link
    We present two nonparametric approaches to Kullback-Leibler (KL) control, or linearly-solvable Markov decision problem (LMDP) based on Gaussian processes (GP) and Nystr\"{o}m approximation. Compared to recently developed parametric methods, the proposed data-driven frameworks feature accurate function approximation and efficient on-line operations. Theoretically, we derive the mathematical connection of KL control based on dynamic programming with earlier work in control theory which relies on information theoretic dualities for the infinite time horizon case. Algorithmically, we give explicit optimal control policies in nonparametric forms, and propose on-line update schemes with budgeted computational costs. Numerical results demonstrate the effectiveness and usefulness of the proposed frameworks

    A phase-1 approach for the generalized simplex algorithm

    Get PDF
    AbstractA new simplex variant allowing basis deficiency has recently been proposed to attack the degeneracy [1]. As a generalization of the simplex algorithm, it uses a Phase-1 procedure, solving an auxiliary problem with piecewise-linear sums of infeasibilities as its objective. In this paper, we develop another Phase-1 approach that only introduces a single artificial variable. Unlike the former, which needs a crash procedure to supply an initial basis, the proposed Phase-1 is able to get itself started from scratch, with an artificial basis having a single column. Computational results with a set of standard test problems from NETLIB are also reported

    Agile Autonomous Driving using End-to-End Deep Imitation Learning

    Full text link
    We present an end-to-end imitation learning system for agile, off-road autonomous driving using only low-cost sensors. By imitating a model predictive controller equipped with advanced sensors, we train a deep neural network control policy to map raw, high-dimensional observations to continuous steering and throttle commands. Compared with recent approaches to similar tasks, our method requires neither state estimation nor on-the-fly planning to navigate the vehicle. Our approach relies on, and experimentally validates, recent imitation learning theory. Empirically, we show that policies trained with online imitation learning overcome well-known challenges related to covariate shift and generalize better than policies trained with batch imitation learning. Built on these insights, our autonomous driving system demonstrates successful high-speed off-road driving, matching the state-of-the-art performance.Comment: 13 pages, Robotics: Science and Systems (RSS) 201

    Reconstructing Visual Stimulus Images from EEG Signals Based on Deep Visual Representation Model

    Full text link
    Reconstructing visual stimulus images is a significant task in neural decoding, and up to now, most studies consider the functional magnetic resonance imaging (fMRI) as the signal source. However, the fMRI-based image reconstruction methods are difficult to widely applied because of the complexity and high cost of the acquisition equipments. Considering the advantages of low cost and easy portability of the electroencephalogram (EEG) acquisition equipments, we propose a novel image reconstruction method based on EEG signals in this paper. Firstly, to satisfy the high recognizability of visual stimulus images in fast switching manner, we build a visual stimuli image dataset, and obtain the EEG dataset by a corresponding EEG signals collection experiment. Secondly, the deep visual representation model(DVRM) consisting of a primary encoder and a subordinate decoder is proposed to reconstruct visual stimuli. The encoder is designed based on the residual-in-residual dense blocks to learn the distribution characteristics between EEG signals and visual stimulus images, while the decoder is designed based on the deep neural network to reconstruct the visual stimulus image from the learned deep visual representation. The DVRM can fit the deep and multiview visual features of human natural state and make the reconstructed images more precise. Finally, we evaluate the DVRM in the quality of the generated images on our EEG dataset. The results show that the DVRM have good performance in the task of learning deep visual representation from EEG signals and generating reconstructed images that are realistic and highly resemble the original images
    • …
    corecore