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A b s t r a e t - - A  new simplex variant allowing basis deficiency has receutly been proposed to attack 
the degeneracy [1]. As a generalization of the simplex algorithm, it uses a Phase-1 procedure, solving 
an auxiliary problem with piecewise-linear sums of infeasibilities as its objective. In this paper, we 
develop another Phase-1 approach that only introduces a single artificial variable. Unlike the former, 
which needs a crash procedure to supply an initial basis, the proposed Phase-t is able to get itself 
started from scratch, with all artificial basis having a single column. Computational results with a 
set of standard test problems from NETLIB are also reported. @ 2001 Elsevier Science Ltd. All 
rights reserved. 

K e y w o r d s - - D e g e n e r a c y ,  Deficient basis, LU-decomposition, Ph~e-1, Single artificial variable. 

1. I N T R O D U C T I O N  

T h e  s i m p l e x  a l g o r i t h m  [2,3] has  been  v e r y  successfu l  in so lv ing  l inear  p r o g r a m n f i n g  ( L P )  p r o b l e m s .  

H o w e v e r ,  it h ~  e x p e r i e n c e d  a di f f icul ty  t h e o r e t i c a l l y  and  prac t ica l ly .  A n  i t e r a t i o n  s t ep  cou ld  

fail  t o  t a k e  a n o n z e r o - l e n g t h  s tep  fo rward  f rom a degenerate ve r t ex ,  a t  wh ich  m o r e  t h a n  'n 

h y p e r - p l a n e s  m e e t  in t h e  n - space .  T h e o r e t i c a l l y ,  th i s  u n d e r m i n e s  t h e  f in i teness  of  t h e  s i m p l e x  

a l g o r i t h m ;  p rac t i ca l ly ,  th i s  cou ld  lead  to  i ts  s t a l l ing  for t o o  long a t i m e  be fo re  e x i t i n g  a v e r t e x ,  

and  c o n s e q u e n t l y  d e g r a d i n g  efficiency, or  e v e n  fa i l ing to  solve  a large  p r o b l e m  comple t e ly .  

In  o u r  op in ion ,  t h e  s i m p l e x  a l g o r i t h m  shou ld  be  b e t t e r  to  be  v i ewed  as a ba s i s - s ea r ch ing  r a t h e r  

t h a n  v e r t e x - s e a r c h i n g  a p p r o a c h .  In  fact ,  i t  p roceeds  to  a new basis  in each  i t e r a t i o n  s tep ,  d i f fe ren t  
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from the old basis by a single column. Unfortunately, it might not move to a new vertex since in 
the simplex methodology, more than one basis can correspond to a single vertex if it is degenerate, 

and no pivot rule has guaranteed to be able to specify the next basis that  corresponds to a really 

different vertex in this case. 

Therefore, it seems to be attractive to establish a one-to-one correspondence between vertices 
and bases, or at lease, to make as few bases as possible correspond to a tingle vertex. To this 

end, it is logical to modify the square basis concept by allowing its deficiency, characterized as 

one having fewer columns than rows. 
Along this line, a generalization of the simplex algorithm using the QR-decomposition was 

proposed [4]. Recently, an LU-decomposition-based variant was made [1]. The Phase-1 of the 

latter starts with an initial generalized basis, provided by a crash heuristic, and solves an auxiliary 

program with piecewise-linear sums of infeasibilities as its objective to achieve feasibility. The 

purpose of writing this paper is to present a new Phase-1 approach that can get itself started 

from scratch with an artificial basis having only a single column. 

We are concerned with the LP problem in the following standard form: 

min cTx ,  (1.1a) 

s.t. A x  = b, x > O, (1.1b) 

w h e r e A  E 7~ mx~ w i t h i n  < n, and bE ~ m  c E  7~ n. It is assumed that the cost vector c, the 

right-hand side b, and A's columns and rows are nonzero, and that A x  = b is consistent. No 

assumption is made on the rank of A, except 1 < rank(A) < m. 

The following notation will be utilized throughout this paper: 

aj the jth column of A, 

aid the ith row and jth column entry of A, 

ei the unit vector with the ith component 1, 

• j the jth component of a vec to r . ,  

II " II the 2-norm of a vec to r . ,  
R( . )  the range space of a matrix .. 

In the next section, for self-contained the generalization of the simplex algorithm is first pre- 

sented. Then in Section 3, the Phase-1 approach is established. Finally, computational results, 

obtained with a set of standard test problems from NETLIB, are reported in Section 4. 

2. T H E  G E N E R A L I Z A T I O N  OF T H E  S I M P L E X  A L G O R I T H M  

In this section, we first generalize the basis concept and then describe a variant of the simplex 

algorithm using such a basis. 
Basis  is defined as a square nonsingular submatrix fl'om the coefficient matrix, of order exactly 

equal to the number of rows of the coefficient matrix. Since the number of basis' columns is 

fixed to m, some basic variables must have value zero, whenever the right-hand side belongs to 

a proper subspace of the range space of the basis. Therefore, a direct way to ease degeneracy is 

to remove those basic columns that do not belong to the proper subspaee. 
The preceding idea leads to the following redefinition of the basis for A x  = b, or any system 

equivalent to it. 

DEFINITION 2.1. A basis is a s u b m a t r i x  consis t ing of any l inearly independen t  set of co lumns  o f  

the  coefficient matr ix ,  whose range space includes the  r ight-hand side. 

All bases now fall into the following two categories. 

DEFINITION 2.2. I f  the  number  o f  co lumns  o f  a basis equals the  n u m b e r  o f  rows o f  the  coefficient 

matiqx,  it  is a full basis; else, it  is a deficient one. 

Clearly, the simplex algorithm merely uses the full basis. We shall demonstrate how to modify 

it using the generalized basis, just introduced above. 
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Let B be a basis with s columns and let N be nonbasis, consisting of the remaining colunms 

of A. Define the ordered basic and nonbasic index sets, respectively, by 

JB = { j l , . . . , j s }  and JN = {kt  . . . .  , k , , - s } ,  (2.1) 

where j i ,  i = 1 , . . . ,  s, is the index of the i TM colunm of B, and kj, j = 1 , . . . ,  ~t - ,~, the index of 

the j th column of N.  The  subscript  i of a basic index j i  is called row index, and the subscript  j of 

a nonbasic index Ivy column index. Componen t s  and cohmms of associa.ted vectors and matrices,  

cor responding to basic and nonbasic indices, are called basic and nonbasic, respectively. For 

simplicity of exposition, hereafter, components  of vectors and columns of m~ttrices will always be 

arranged,  and par t i t ioned conformably, as the ordered set {,IB, JN} changes. For instance, we 

have 

A = [ B , N ]  : [ a j l , . . . , a j . . ; ( 2 ~ : l , . . . , ( ~ , ] t t ,  s ] ,  

cT = [CTB, CTN] = [ C . j l , . . . ,  cjy ;c]~ . . . . . .  , cir.,, .~ ] ,  

T T 
~C T = [3JB;XN]  = [Xjl  . . . .  , ;Ej , ; ;~ :~ , I , . . .  ,ir]~ . . . . .  ] • 

Using the preceding notat ion,  program (1.1) can be wri t ten 

nfin f = c~:rB + CT.XN, 

s.t. BXB + N X N  = b, 

xB > O, :rN >_ 0. 

(2.2a) 
(2.2b) 
(2.2(:) 

Now form the initial tableau below: 

• (2.3) 

The  preceding will be continuously modified by premult iplying it by Gauss  t ransformat ions  with 

row exchanges until an opt imal  one is reached (see below). Clearly, all such tableaus are equivalent 
to one another ,  in the sense of their representing the program (2.2), or (1.1). 

Wi thou t  loss of generality, hereafter we shall assume tha t  the number  of  basic columns is less 

t han  the number  of rows, i.e., s < m. Suppose tha t  we are current ly faced with the ~bllowing 

tableau,  with the  associated sets JB and JN given, as part i t ioned:  

_ - o & , (2.4) 
o ~T _f j  

where Us E T¢ sxs is upper  tr iangular.  A tableau with upper t r iangular  basic colmnns,  like (2.4), 

is t e rmed  a canonical tableau. Since the (s + 1) th rough  mth components  of t) are zero, the upper  
t r iangular  mat r ix  U E T4 mx~ is a basis. The  related basic solution is then 

• N = 0,  ( 2 . 5 a )  

2B = U l l b l ,  (2,5t)) 

corresponding to tile objective value f. 
I t  is easy to show tha t  if ffXB _> 0 and 2N >_ O, then an opt imal  b ~ i c  solution is ah 'eady obtained.  

and hence, we are done. Such a tableau is termed optimal. Now" assume that, this is not, the case 
but  tableau (2.4) is feasible, i.e., XB _> 0 and 5N ;~ 0. Take notat ion 
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To make a basis change, we select a nonbasic column to enter the basis under some column 
selection criteria, for instance, the following analogy to Dantzig's original one: 

q = a r g m i n { ~ k j  [ j  = 1 , . . . , n  - s} .  (2.6) 

Thus, ~k,, < 0, and the nonbasic column gk,, will enter the basis. There will be one of the following 
two cases arising, which need to be treated separately. 

CASE 1. s = m, or s < m but all the (s + 1) through mth entries of ak,, are zero. This case 
occurs if and only if ak,, E R(U). 

In this case, the value of the ~, ,  is allowed to increase from zero, with the objective value 

decreasing. Denote by (.)(s) the subvector consisting of the first s components of a vector . .  To 
determine a blocking basic variable, compute the s-vector 

v = u i - l (~k , , )  (s), (2.7) 

by solving the upper triangular system UlV = (Sk,,) (8). There is no blocking variable, and the 
program is hence, unbounded below if v < O. In the other case, a row index p can be determined 
such that  

Cg ----- Z i p / V p  = rain {~j~/vi [ vi > 0, i = 1 , . . . ,  s} > 0, (2.8) 

where the inequality holds under nondegeneracy, i.e., ~B > 0. Therefore, as the value of ~k(, 
grows from zero up to a with values of the other nonbasic components of the basic solution fixed 
on zero, the value of ij~ decreases down to zero, subject to primal feasibility. This leads to the 
following formula for updat ing the basic feasible solution ~: 

• j~ : = ~ j ~ - a v i ,  Y i =  1 , . . . , s ;  .~k,, : = a .  (2.9) 

Effects of a basis change is to bring the pth basic column of the canonical tableau to the end of its 

nonbasic columns, with JB and JN adjusted conformably. If p = s, the resulting U E ~,~x (s-1) is 

already upper triangular, while when p < s, it is an upper Hessenberg with nonzero subdiagonal 
entries in its p through (s - 1) th columns. In the latter case, the unwanted entries are zeroed 

via Gaussian elimination, with possible row exchanges for larger diagonal pivots. Then, the qth 
nonbasic column of (2.4) is brought to the end of its basic columns, with JB and JN adjusted 
conformably. It  is easy to show that  the S th entry of the newly-entering basic colmnn is nonzero, 
and hence, the resulting U c T~ "~x~, or U1 E ~ x s  is again upper  triangular, with nonzero 

diagonal entries. 

CASE 2. s < m and some of the (s + 1) through mth entries of 5k,, are nonzero. This case occurs 
if and only if ak,, ~ R(U). 

This time, the value of xk,, is not allowed to increase from zero because this will lead to the 
violation of some of the last m - s constraints. We are, therefore, forced to increase the number 
of basis' columns. Set s :-= s + 1. Annihilate the (s + 1) through rr~ th entries, if any, of ~k,, via 
Gaussian elimination with a row exchange for a largest possible diagonal pivot, and bring the qth 
nonbasic column of canonical tableau (2.4) to the end of its basic part.  After that ,  we rearrange 

JB and JN conformably. Clearly, the resulting U E 7¢ "~x~ is upper  triangular, with nonzero 
diagonal entries. 

I t  is observed that  the Gaussian elimination carried out in either case do not disturb (s + 1) 
th rough  m th zero components of the right-hand side at all. Thus, a new canonical tableau 
presents, once the newly-entering basic entry of the cost row is zeroed via Gaussian elimination. 
The description of a single iteration is then completed. Such steps are repeated until optimali ty 
is accomplished, or otherwise lower unboundedness is detected. I t  is noted tha t  the number of 
basis' columns varies dynamically, but never decreases, in the solution process. 

Since the number of basis' columns remains unchanged in Case 1, and grows by one in Case 2, 
the corresponding iterations will be referred to as full and rank-increasing ones, respectively. 

The preceding steps are summarized into the following model. 
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ALGORITHM 2.3. Main procedure: tableau version. Let  (2.4) be an initial canonical tableau, 

and let JB and JN be the associated index  sets. Given the basic feasible solution "2, featured 

by (2.5). 

1. S top  i f  zN >_ O. 
2. De te rmine  a c o h m m  index  q by rule (2.6). 
3. I f  s < m and some of  the (s + 1) through mth entries orris.,, are nonzero, do the following: 

(i) set  s := s + l, 

(ii) de termine  a row index  'r such that  II0,..a-,,/I = max{l l~ .k , ,  III i = s , . . . ,  m } ,  
Oii) swap the s and r th rows i f  r ¢ s, 

(i~ 9 zero the (s + 1) through mth entries of" at,,, using Gaussian elimination, 

(v) go to S tep  10. 
4. C o m p u t e  vector v, defined by" (2. 7). 

5. S top  i f  v <_ O. 
6. De te rmine  a row index  p and a step-length ct by (2.8). 

7. Updated  x by (2.9). 
8. Br ing  the pth basic column of  the tableau to the end of  its nonbasic part ,  and adjus t  

sets  JB and JN conformably.  

9. I f  p < s, then for k = p, . . . ,  s - 1 do the following: 

(i) de termine  a row index  r sud] that  II~,..j~ [[ = max{lla/,jk II i = k, k + 1}; 
Oi) swap the k and r th rows i f  r ¢ k; 

(iii) zero the sub-diagonal en try  o f  8jk via Gaussian elimination. 

10. Bring  the q nonbasic c o h m m  of the tableau to the end of  its basic part ,  and adjus t  JB 

and JN confbrmably.  
11. Zero 2j~ xda Gaussian elimination. 

12. Go to S tep  1. 

Since there  are only finitely m a n y  bases, the a lgor i thm does not t e rmina t e  if and only if cycling 
occurs.  Fur thermore ,  since the number  of colunms of a basis never decreases in the  process,  a 
cycle never  involves any rank-increasing i teration.  In other  words, cycling can only occur  in full 
i terat ions.  If  nondegeneracy  is assumed for full i terations,  there  will be no chance of cycling at  
all, since the object ive  value decreases strictly. Thus,  based on the  discussions made  prior  to  the  

in t roduc t ion  of the  a lgori thm, we s ta te  the following. 

THEOREM 2.4. Under nondegeneracy  assumpt ion  on all full iterations, A lgor i thm 2.3 terminates  

at ei ther 

(1) S tep  1, wi th  an opt imal  basic solution reached; or 

(2) S tep  5, detect ing lower unboundedness  of  p r o g r a m  (1.1). 

I t  is also possible to derive a revised version of Algor i thm 2.3 [1]. 

3. T H E  P H A S E - 1  P R O C E D U R E  

Algor i thm 2.3 needs a feasible basis to get itself s tar ted.  For this purpose,  in this sect ion we 
develop a Phase-1 approach  which s tar ts  with an artificial basis having a single column.  

In t roduce  an artificial var iable  x~+1, and const ruct  the following auxi l iary  program:  

min x,~+l, (3.1a) 

s.t. A x  + x, ,+lb = b, (3.1b) 

x > 0, x**+l _> 0. (3.1c) 

¼re have the  following results concerning the  preceding program.  
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~I'HEOREM 3.1. Program (3.1) has an optimal solution with ~ nonnegative optimal value. More- 
over, the fbasible re~ion of the original program (1.1) is nonempty if  and only it" the optimal value 
of (3.1) is equal to zero. 

PROOF. Set index sets as follows: 

J 8  = { j , }  = + 1} a n d  = { 1 , . . .  (3.2) 

and corresi)ondingly set nonbasis N = A, and basis B = (b). Then  we have the associated basic 

solution to (3.1), i.e., 

Y' = 0 and x,,+l = 1, (3.3) 

which is clearly feasible. Seeing tha t  :c,~+, > 0, therefore, we can assert tha t  program (3.1) has an 

opt imal  solution with an nonnegative opt imal  value. Let ~,. , ~ be an opt imal  solution to (3.1). 

If :r~+l = 0, the 2 is clearly a feasible solution to (1.1). Conversely, if :~ is a feasible solution 

to (1.1), then (:~;) is an ol)tinml solution to (3.1). Tha t  is to say, there exists a feasible solution 

to l)rogran~ (1.1) if' and only if the ()primal value of program (3.1) is equal to zero. | 

Therefore,  our Phase-1 is merely to carry out  the proce(hn'e, described in the fbregoing section, 

to solve (3.1), s tar t ing with initial sets gt~ and ,IN, (lefined l)y (3.2), and the corresponding initial 
basis /3 = (b) and nonbasis iV = A. 

Such Phase-1 procedure has two at t ract ive features. First, it is s imper than the Phase-1 by 

solving an auxiliary l)rogram with piecewise-linear sinus of infeasibilities as its objective, or other  

variants of it. Second, it (tail get itself s tar ted fl'om scratch, and hence, there will be no need for 

any crash procedure to provide initial basis and nonbasis. 

4. C O M P U T A T I O N A L  E X P E R I M E N T S  

In order to gain ml insight into the behavior of the proposed t~pI)roach, we have l)erformed 

some conlputa t ional  experiments  (without  exploiting the sparseness). 

Tile following two F O R T R A N  77 modules were tested, and compared.  

Code RSA: A conventional implementat ion of the revised two-pfiase simplex algorithm, in which 

the inverse of the basis is upda ted  explicitly in each i teration step. 

Code PAG: Algor i thm 2.3 serves as its Phase-2 procedure. It is also used in Phase-1 to solve 
program (3.1) to achieve feasibility. 

In all runs reported below, the problems were first reduced in size by a preprocessor to remove 

redundant  rows before executing RSA, whereas no such action was needed by PAG; the rows and 

cohmms of the constraint  matr ix  were scaled by the preprocessor for both  (:odes. Harris '  pivot 

s t ra tegy  [5] was incorporated into each ('()de fittingly. 

Compiled using tile NDP F O R T R A N  386 VEIl .  2.1.0. with default options, all runs were 

carried out  under DOS 6.2 system on an IBM 496/66 DX2 compatible  microcomputer ,  with 

memory  32 Mbytes available. The machine l)reeision used was about  16 decimal places. Pivot  
tolerance taken was 10 - s ,  and both the priuml and dual feasibility tolerance were 10 -6.  The  

reported C P U  times were measured in seconds with utility routine DOSTIM.  However, the t ime 

required by the preprocessor was not included. 
The  test  set, of problems inclndes 25 s tandard  LP I)roblems from N E T L I B  tha t  do not  have 

B O U N D S  and R A N G E S  sections in their NIPS files [6] since the current  version of our codes 
cannot  handle them implicitly. As the largest possible subset of N E T L I B  problems of such kind 
tha t  call be solved in our comput ing  environment,  they are the first 25 problems in the order of 
increasing suln of the numbers  of rows and cohmms in the coefficient matrix,  before adding slack 

variables. 
Nmnerical  results obtained with RSA are shown in Table 4.1, where numbers  of rows and 

(:olumns of each tested problem is listed in the cohmms labeled M and N, and their sum in the 
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Table 4.1. Code RSA statistics. 

Total 

1461 

Problem M N M + N 
lter Time % Dgn Iter 

A F I R O  27 32 59 29 0.22 68.97 28 

SC50B 50 48 98 59 1.32 77.97 51 

SC50A 50 48 98 57 1.27 71.93 51 

A D L I T T L E  56 97 153 128 4.07 13.28 69 

BLEND 74 83 157 115 6.10 39.13 90 

SHARE2B 96 79 175 196 16.53 57.14 149 

SC105 105 103 208 123 13.5t 70.73 110 

S T O C F O R 1  117 111 228 174 23.62 70.11 150 

SCAGR7 129 140 269 181 31.31 33.70 146 

ISRAEL 174 142 316 513 159.73 0.78 188 

SHARE1B 117 225 342 309 49.87 7.12 190 

SC205 205 203 408 262 133.36 67.56 211 

B E A C O N F D  173 262 435 213 81.45 51.17 159 

L O T F I  153 308 461 348 106.23 13.51 190 

BRANDY 220 249 469 356 164.34 34.27 238 

E226 223 282 505 615 396.07 22.60 394 

AGG 488 163 651 640 2002.53 7.03 572 

S C O R P I O N  388 358 746 404 742.15 60.89 380 

BANDM 305 472 777 674 929.56 22.85 489 

SCTAP1 300 480 780 480 653.78 35.21 344 

SCFXM1 330 457 787 595 962.35 35.46 429 

AGG2 516 302 818 823 3018.92 4.86 629 

AGG3 516 302 818 839 3072.64 5.60 627 

SCSD1 77 760 837 195 35.15 77.44 80 

SCAGR25 471 500 971 911 2935.06 30.74 616 

T O T A L  5360 6206 11566 9239 15541.14 27.21 6580 

Phase-1 

Time % Dgn 

0,22 71.43 

1.16 88.24 

1.16 78.43 

2.31 24.64 

4.89 50.00 

12.85 67.79 

12.25 77.27 

20.65 80.67 

25.82 41.78 

64.16 1.06 

31.86 11.58 

109.74 81.04 

62.45 57.86 

60.64 22.63 

113.59 50.00 

262.93 32.49 

1814.74 6.99 

701.84 64.21 

688.93 30.06 

479.61 43.60 

710.35 46.39 

2358.44 5.56 

2352.02 6.22 

15.10 97.50 

2042.13 40.26 

11949.84 34.83 

column labeled M÷N.  Total iterations and time, required for solving each problem, are displayed 
in the two columns labeled Iter and Time under Total, and those required by Phase-1 in the two 

columns under Phase-l; the percentage of degenerate iterations are given in the columns labeled 
~o Dgn. Results associated with PAG are given in Table 4.2. All runs terminated with correct 
opt imal  objective values reached, as those in NETLIB index file. 

Table 4.3 offers a comparison of RSA vs. PAG. Ratios of RSA total  iterations and t ime to 
PAG total  iterations and time are, respectively, given in the two columns labeled Iter and Time 
under Total, while ratios associated with Phase-1 are listed under Phase-1. The line labeled 
Total indicates tha t  t ime ratios for total  and Phase-1 are as high as 8.27 and 11.17, respectively. 
Thus, PAG unambiguously outperforms RSA without any exception on all the test  problems. We 
would like to point out tha t  PAG is also slightly more efficient than GSA, which are dealt with 
in the earlier paper  [1]. 

To see how the method performs with the increase of sizes of test problems, we divide the 25 
problems into three groups: the first named "SMALL" includes the first eight problems, from 
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Table 4.2. Code PAG statistics. 

Total 

Problem 
lter Time % Dgn % DK % MI % NIl [ter 

AFIRO 31 0.06 3.23 100.00 96.30 16.13 8 

SC50B 61 (/.17 0.00 100.00 96.00 21.31 6 

SC50A 60 0.16 0,00 100.00 98.00 18.33 11 

ADL1TTLE 148 1.87 8. l l  52.03 100.00 62.16 50 

BLEND 123 1.26 14.63 62.60 100.00 39.84 9 

SHARE2B 195 3.96 33.85 !17.44 1 0 0 . 0 0  50.77 139 

SC105 132 1.82 3.03 100.00 98.10 21.97 21 

STOCFOR 1 137 2.48 2.19 9,l.16 100.00 11.60 85 

SCAGR7 198 9.77 13.13 80.30 100.00 34.85 152 

ISRAEL 444 27.95 0.00 81.31 100.00 60.81 172 

SIlARE1B 313 1!).77 14.38 42.49 1 0 0 . 0 0  62.62 163 

SC205 294 20.43 !).18 100.0(I !18.54 31.29 39 

13EACONFD 141 10.60 0.00 100.00 71/.52 13.48 123 

L()TH 305 28.28 16.72 87.87 1 0 0 . 0 0  ,19.84 86 

BI/ANDY 314 34.00 9.24 100.00 88,08 45.86 191 

E226 669 76.35 9A2 100.00 94.17 68.61 157 

AGG 547 130.,10 4.57 100.00 .98.36 I2.25 473 

SCORPION 377 64.38 1.06 100.00 95.52 !).55 290 

I3ANDM 538 158.90 7.43 100.00 98.69 44.05 314 

SCTAP1 368 81.29 12.50 100.00 89.67 26.90 249 

SCFXM1 5l l  157.31 6.65 100,00 99.119 36.01 299 

AGG2 693 294.18 4.18 96.39 100.00 25.54 516 

AGG3 7111 301.48 4.42 96.111 1 0 0 . 0 0  26.39 516 

SCSDI 121 11.21 32.23 81.82 100.00 36.36 6 

SCAGR25 693 440.06 14.14 100.00 98.30 33.19 555 

TOTAL 8114 1878.14 8.52 93.30 (,)6.87 36.70 4630 

Phase- 1 

Time % Dgn 

0.00 0.00 

0.06 0.00 

/).1)5 0.00 

O.38 8.00 

0.05 0.00 

3.13 44.60 

0.22 0.00 

1,38 0.00 

5.82 17.11 

7.7,1 0.00 

10.71 27.61 

(I.!19 0.00 

7.91 0.00 

1.01 0.00 

17.90 15.18 

16.76 9.55 

110.35 3.38 

50.92 1.38 

77.50 8.28 

50.8O 9.64 

69.54 8.03 

172.08 0.00 

172.02 o.00 

0.28 0.00 

288.!16 t7.12 

1069.56 7.99 

AFIR.O to  S T O C F O R 1 ,  t h e  s e c o n d  n a m e d  " M E D I U M "  i n c l u d es  t i le  fo l lowing  e i g h t  p r o b l e m s ,  

f r o m  S C A G R 7  to  E226,  a n d  t i le  t h i r d  n a m e d  ' ; L A R G E "  co n s i s t s  of  t i le las t  n i n e  p r o b l e m s ,  f i 'om 

A G G  to  S C A G R 2 5 .  R a t i o s  fbr each  g r o u p  as a w h o l e  are  g iven  in t i le  b o t t o m  t h r e e  l ines  of  T a b l e  

4.3. I t  is seen  t h a t  P A G ' s  s u p e r i o r i t y  over  R S A  g rows  w i t h  t h e  i n c r ea s e  of  p r o b l e n l  sizes,  overal l .  

N e v e r t h e l e s s ,  we do n o t  w a n t  to  c la im too  m u c h  a b o u t  t h e  s u p e r i o r i t y  of  t h e  n e w  a p p r o a c h  over  

m o d e r n  s i m p l e x  i m p l e m e n t a t i o n s  b a s e d  on  our  c o m p u t a t i o n a l  t e s t s  d o n e  a t  t h i s  s t age .  R a t h e r ,  

w h a t  we  w a n t  t o  dea l  w i t h  he re  is P A G ' s  d i s t i n c t i v e  a n d  f avo rab l e  b e h a v i o r  t h a t  m a k e s  i t se l f  

s u c h  an  u n a m b i g u o u s  w i n n e r  c o m p a r e d  w i t h  RSA.  

T h e  f irs t  ga in  is b o u n d e d  uI) w i t h  t h e  r e d u c t i o n  of  ef fec ts  of  d e g e n e r a c y .  In  T a b l e s  4.1 a n d  4.2, 

t i le c o l u m n s  l abe l ed  ~ Dgr~, revea l  t h a t  overal l ,  fin' 1RSA, 27.21~: of  t o t a l  i t e r a t i o n s  a n d  34 .83% 

of  P h a s e d  i t e r a t i o n s  a re  d e g e n e r a t e  ( w i t h  z e r o - l e n g t h  s t ep s ) ,  while., for P A G ,  on ly  8 .52% of  t o t a l  

i t e r a t i o n s  a n d  7.99% of  P h a s e - 1  i t e r a t i o n s  are  such  ones .  

A n o t h e r  bene f i t  s t e m s  fl 'om t h e  large  n u m b e r  of  de f ic ien t  bases  e n c o u n t e r e d  in P A G ' s  s o l u t i o n  

p roces s .  In  T a b l e  4.3, t h e  c o h m m  l abe l ed  ~ D]k i n d i c a t e s  t h a t  as h i g h  as 93.30% of  t o t a l  bases  
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Table 4.3. Ratio of RSA to PAG. 

Problem M + N 

AFIRO 59 

SC50B 98 

SC50A 98 

A D L I T T L E  153 

BLEND i57 

SHARE2B 175 

S C 105 2t)8 

STOCFORA 228 

SCAGR7 269 

ISRAEL 316 

SHARE1B 342 

SC205 408 

B E A C O N F D  .i35 

LOTFI  46i 

BRANDY 469 

E226 505 

AGG 651 

S C O R P I O N  746 

BANDM 777 

SCTt \P  1 780 

SCFXM1 787 

AGG2 818 

AGG3 818 

SCSD1 837 

SCAGR25 971 

TOTAL 11566 

S MALL 1176 

MEDIUNI 3205 

LA RG E 7185 

~lbtal Phase- 1 

Iter Time lter Phase- 1 

0.9,1 3.67 3.50 

0.!)7 7.76 8.50 19.33 

0.95 7.94 4.64 23.20 

0.86 2.18 1.38 6.08 

0,93 4.84 I0.00 97.80 

1,01 4.17 1.07 4.11 

0,93 7.42 5.24 55.68 

1,27 9.52 1.76 14.96 

0.91 3.20 0.96 4.44 

1.16 5.71 1.09 8.29 

0.99 2.52 1.17 2.97 

0.8!) 6.53 5.,:11 110.85 

1.51 7.68 1.29 7.90 

1.14 3.76 2.21 15.12 

1.13 4.83 1.25 6.35 

0.92 5.1!) 2.51 15.69 

1.17 15.36 1.21 16.45 

1.07 ll .53 1.31 13.78 

1.25 5.85 1.56 8.89 

1.31) 8.04 1,38 9.,14 

1.16 6. I2 1.43 10.21 

1.19 10.26 1.22 13.71 

1.2() 10.19 1.22 13.67 

1.61 3.14 13.33 53.93 

1.31 6.67 1.[1 7.07 

1.14 8.27 [.42 11.17 

0.99 5.66 2.12 10.53 

1.04 4.9,4 1.58 10.18 

1.22 8.76 1.29 11.25 
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are deficient overall. In fact, the cohunn labeled X M1, giving the percentage of the number of 

colulnns of the final basis reached to the number of rows, indicates that. a deficient optimal basis 
is obtained with more than a half of the test problems (14 ont of the 25). 

Another profit is related to the fact that  rank-increasing iterations constitute the majority. 

Recall that  while such an iteration appends a cohmm to the basis, a flfll iteration not only 

appends to but also drops from the /)asis' cohmms. In Table 4.2, the column labeled ~0 Nfl 

reveals that  the nnmber of flfll iterations is low. Overall, only a little more than one third 

of total iterations are fldl (a6.70~); that  is to say, nearly two thirds of all the iterations are 
rank-increasing ones. This should be a good indication of the high efficiency of the new code. 
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