46,202 research outputs found

    Model validation of spatiotemporal systems using correlation function tests

    Get PDF
    Model validation is an important and essential final step in system identification. Although model validation for nonlinear temporal systems has been extensively studied, model validation for spatiotemporal systems is still an open question. In this paper, correlation based methods, which have been successfully applied in nonlinear temporal systems are extended and enhanced to validate models of spatiotemporal systems. Examples are included to demonstrate the application of the tests

    FE analysis of multi-cycle micro-forming through using closed-die upsetting models and forward extrusion models

    Get PDF
    Research in micro-forming leads to the investigation of the effects of heat generation in the workpiece and temperature changes in the tools during the forming. The results reported in this paper relate to the study of cold micro-forming processes which are usually ignored on its thermal characteristics. Two closed-die upsetting models were used for the simulation of the forming of micro-parts in single forming trial and in mass production (multi-cycle loading), respectively. An elastic-plastic finite element simulation was performed for a single forming trial. The heat transferred to the die, computed from the simulation, was then used as an input for the multi-cycle heat loading analysis in the die. Two materials: silver and low carbon steel, were used as the work material. The results show that the die saturation temperature could still go up to 100 °C for small size dies, which is significant for the forming of micro-parts. Forming errors due to the die-temperature changes were further computed, which forms a basis for developing considerations on the forming-error compensation. Using the same methods and procedures, forming of a micro-pin via forward extrusion was analysed

    The identification of complex spatiotemporal patterns using Coupled map lattice model

    Get PDF
    Many complex and interesting spatiotemporal patterns have been observed in a wide range of scientiÂŻc areas. In this paper, two kinds of spatiotemporal patterns including spot replication and Turing systems are investigated and new identiÂŻcation methods are proposed to obtain Coupled Map Lattice (CML) models for this class of systems. Initially, a new correlation analysis method is introduced to determine an appropriate temporal and spatial data sampling step procedure for the identification of spatiotemporal systems. A new combined Orthogonal Forward Regression and Bayesian Learning algorithm with Laplace priors is introduced to identify sparse and robust CML models for complex spatiotemporal patterns. The final identified CML models are validated using correlation based model validation tests for spatiotemporal systems. Numerical re-sults illustrate the identification procedure and demonstrate the validity of the identified models

    Color television system for a manned space base Progress report

    Get PDF
    Color television system for manned space statio
    • …
    corecore