247 research outputs found

    Thermoelectric behavior of Ruddlesden-Popper series iridates

    Full text link
    The goal of this work is studying the evolution of thermoelectric transport across the members of the Ruddlesden-Popper series iridates Srn+1IrnO3n+1, where a metal-insulator transition driven by bandwidth change occurs, from the strongly insulating Sr2IrO4 to the metallic non Fermi liquid behavior of SrIrO3. Sr2IrO4 (n=1), Sr3Ir2O7 (n=2) and SrIrO3 (n=inf.) polycrystals are synthesized at high pressure and characterized by structural, magnetic, electric and thermoelectric transport analyses. We find a complex thermoelectric phenomenology in the three compounds. Thermal diffusion of charge carriers accounts for the Seebeck behavior of Sr2IrO4, whereas additional drag mechanisms come into play in determining the Seebeck temperature dependence of Sr3Ir2O7 and SrIrO3. These findings reveal close relationship between magnetic, electronic and thermoelectric properties, strong coupling of charge carriers with phonons and spin fluctuations as well as relevance of multiband description in these compounds.Comment: main paper + supplementary informatio

    Thermal shot noise in top-gated single carbon nanotube field effect transistors

    Get PDF
    The high-frequency transconductance and current noise of top-gated single carbon nanotube transistors have been measured and used to investigate hot electron effects in one-dimensional transistors. Results are in good agreement with a theory of 1-dimensional nano-transistor. In particular the prediction of a large transconductance correction to the Johnson-Nyquist thermal noise formula is confirmed experimentally. Experiment shows that nanotube transistors can be used as fast charge detectors for quantum coherent electronics with a resolution of 13μe/Hz13\mathrm{\mu e/\sqrt{Hz}} in the 0.2-0.8GHz0.8 \mathrm{GHz} band.Comment: 3 pages, 4 figure

    Supercollision cooling in undoped graphene

    Full text link
    Carrier mobility in solids is generally limited by electron-impurity or electron-phonon scattering depending on the most frequently occurring event. Three body collisions between carriers and both phonons and impurities are rare; they are denoted supercollisions (SCs). Elusive in electronic transport they should emerge in relaxation processes as they allow for large energy transfers. As pointed out in Ref. \onlinecite{Song2012PRL}, this is the case in undoped graphene where the small Fermi surface drastically restricts the allowed phonon energy in ordinary collisions. Using electrical heating and sensitive noise thermometry we report on SC-cooling in diffusive monolayer graphene. At low carrier density and high phonon temperature the Joule power PP obeys a PTe3P\propto T_e^3 law as a function of electronic temperature TeT_e. It overrules the linear law expected for ordinary collisions which has recently been observed in resistivity measurements. The cubic law is characteristic of SCs and departs from the Te4T_e^4 dependence recently reported for metallic graphene below the Bloch-Gr\"{u}neisen temperature. These supercollisions are important for applications of graphene in bolometry and photo-detection

    Seebeck effect in the conducting LaAlO_{3}/SrTiO_{3} interface

    Full text link
    The observation of metallic behavior at the interface between insulating oxides has triggered worldwide efforts to shed light on the physics of these systems and clarify some still open issues, among which the dimensional character of the conducting system. In order to address this issue, we measure electrical transport (Seebeck effect, Hall effect and conductivity) in LaAlO_{3}/SrTiO_{3} interfaces and, for comparison, in a doped SrTiO_{3} bulk single crystal. In these experiments, the carrier concentration is tuned, using the field effect in a back gate geometry. The combined analysis of all experimental data at 77 K indicates that the thickness of the conducting layer is ~7 nm and that the Seebeck effect data are well described by a two-dimensional (2D) density of states. We find that the back gate voltage is effective in varying not only the charge density, but also the thickness of the conducting layer, which is found to change by a factor of ~2, using an electric field between -4 and +4MV/m at 77K. No enhancement of the Seebeck effect due to the electronic confinement and no evidence for two-dimensional quantization steps are observed at the interfaces.Comment: 15 pages, 5 figure

    Tc=21K in epitaxial FeSe0.5Te0.5 thin films with biaxial compressive strain

    Full text link
    High purity epitaxial FeSe0.5Te0.5 thin films with different thickness were grown by Pulsed Laser Ablation on different substrates. By varying the film thickness, Tc up to 21K were observed, significantly larger than the bulk value. Structural analyses indicated that the a axis changes significantly with the film thickness and is linearly related to the Tc. The latter result indicates the important role of the compressive strain in enhancing Tc. Tc is also related to both the Fe-(Se,Te) bond length and angle, suggesting the possibility of further enhancement
    corecore