10 research outputs found

    Telomere and Telomerase in Cancer

    Get PDF
    The linear ends of chromosome are protected by specialized ribonucleoprotein (RNP) termed as telomere. These specialized terminal elements with tandem repeated sequence are the protective cap that alleviate end replication problem and cell senescence. The telomere length maintenance is essential to avoid cell death and apoptosis. Telomere shortening has been related to chronic stress due to several factors, which include not only psychological stress but also diseases such as cardiovascular diseases and cancer. Telomerase enzyme which maintains telomere length is the major factor responsible for evading cell death. Telomere length maintenance and telomerase expression put together are the prerequisite for immortality, an essential character for cancer cells. Understanding the mechanism of telomere and telomerase functions paves way for eradicating the diseases such as cancer

    Mycoremediation of Benzo[a]pyrene by Pleurotus ostreatus in the presence of heavy metals and mediators

    Get PDF
    Benzo[a]pyrene is considered as a priority pollutant because of its carcinogenic, teratogenic and mutagenic effects. The highly recalcitrant nature of Benzo[a]pyrene poses a major problem for its degradation. White-rot fungi such as Pleurotus ostreatus can degrade Benzo[a]pyrene by enzymes like laccase and manganese peroxidase. The present investigation was carried out to determine the extent of Benzo[a]pyrene degradation by the PO-3, a native isolate of P. ostreatus, in the presence of heavy metals and ligninolytic enzyme mediators. Modified mineral salt medium was supplemented with 5 mM concentration of different heavy metal salts and ethylenediaminetetraacetic acid. Vanillin and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (1 and 5 mM) were used to study the effect of mediators. Results indicated that P. ostreatus PO-3 degraded 71.2 % of Benzo[a]pyrene in the presence of copper ions. Moderate degradation was observed in the presence of zinc and manganese. Both biomass formation and degradation were severely affected in the presence of all other heavy metal salts used in the study. Copper at 15 mM concentration supported the best degradation (74.2 %), beyond which the degradation progressively reduced. Among the mediators, 1 mM 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate) supported 78.7 % degradation and 83.6 % degradation was observed under the influence of 5 mM vanillin. Thus, metal ion like copper is essential for better biodegradation of Benzo[a]pyrene. Compared to synthetic laccase mediator like 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate), natural mediator such as vanillin may play a significant role in the degradation of aromatic compounds by white-rot fungi

    SCREENING AND PRODUCTION OF ANTICARCINOGENIC ENZYME FROM ESCHERICHIA COLI CTLS20: L - ASPARAGINASE

    Get PDF
    Objective: The objective of this study was attempted to screen the production of L-asparaginase from bacteria isolated from soil samples and its enzymatic activity.Methods: Screening of L-asparaginase was performed using phenol red indicator growth medium from which the positive strains were chosen based on the colour change. The enzyme production of L-asparaginase was established by submerged fermentation followed by the molecular detection of the efficient bacterial strains.Results: The enzyme production was undertaken by submerged fermentation with the evaluation of enzymatic activity and protein content. This revealed that the strain Escherichia coli CTLS20 produced a higher yield of L-asparaginase (30.22 IU/mg), 16.91 µg/ml of protein with the specific activity of 1.787 IU/mg when compared with other bacterial strains. The efficient bacterial strains were also confirmed by 16S rRNA sequence as Escherichia coli, Acinetobacter baumnnii, Klebsiella pneumoniae and the phylogenetic tree construction revealed the evolutionary relationship of the bacterial strains.Conclusion: This study indicated that the bacterial strain E. coli CTLS20 had the ability for the higher production of L-asparaginase. This novel higher yielding bacterial asparaginase is highly desirable as better alternatives in cancer therapy.Keywords: Soil, L-asparaginase, Submerged fermentation, E. coli, Phylogenetic tre

    PRODUCTION AND PURIFICATION OF ANGIOTENSIN-CONVERTING ENZYME INHIBITOR BY SELECTED BACTERIAL STRAIN FOR CANCER THERAPY

    Get PDF
    Objective: The present study was planned to explore safer, innovative and economic Angiotensin-converting enzyme inhibitors (ACEi) from beef extract by the action of a proteolytic Micrococcus luteus. Cytotoxicity of the stable peptide was predicted using MCF-7 cell line in vitro.Methods: ACEi was purified by sequential steps of ethanol precipitation, ion exchange column chromatography (MonoQ) and gel filtration column chromatography (Sephadex G25). The apparent molecular mass was determined by SDS-PAGE. The anticancer property was analyzed by studying the cytotoxicity effects of angiotensin converting enzyme inhibitor using Breast cancer MCF-7 cell linesResults: The peptide was purified and molecular mass was determined as 4.5 kDa. The IC50 value of peptide was found to be 59.5 µg/ml. The DNA fragmentation was not observed in the treated cells. The purified peptide has demonstrated to induce apoptosis of cancer cell. The results proved that the peptide has the ability to be used for cancer therapy.Conclusion: The presence of ACE inhibition activities in the fermentation of beef extract using Micrococcus luteus has been investigated. The Peptide has been determined as an active compound that inhibited the activity of ACE. These properties indicate the possibilities of the use of purified protein as a potent anticancer agent.Keywords: Angiotensin-converting enzyme inhibitors, Micrococcus luteus, Anti-proliferative, Anti-metastatic, MCF-7 cell line, Anticancer activity

    ISOLATION OF ANGIOTENSIN-CONVERTING ENZYME INHIBITOR PRODUCING BACTERIA FROM COW MILK

    Get PDF
    Objective: To evaluate the potential of protease producing organism for the production of Angiotensin I–converting enzyme (ACE) inhibitor by fermentation of various protein substrates.Methods: Bacterial strains were isolated from cow milk collected in Coimbatore, Tamil Nadu, India by using serial dilution technique, plated on nutrient agar medium. The identity of the strain was ascertained by 16s rRNA gene sequencing method and was submitted to the NCBI GenBank nucleotide database. Various substrates were screened for ACE inhibitor production by the fermentation with the isolated strain.Results: The isolated coded as BUCTL09, which showed a significant zone of clearance was selected and identified as Micrococcus luteus (KF303592.1). Among the seven substrates, only beef extract fermented broth showed an inhibition of 79% and was reported as the best substrate.Conclusion: In the search for non-toxic, and economic ACE inhibitors as an alternative to the synthetic drugs, many natural ACE inhibitors have been isolated from a microbial source. In the present study, isolate BUCTL09 was selected for the production of ACE inhibitor from the beef extract. Findings from this study lead us to investigate this potent ACE inhibitor further for its biological properties and to explore the impending efficacy of the ACE inhibitor which may conceivably be developed into a prospective drug

    SIZE DEPENDENT APPLICATION OF BIOLOGICALLY SYNTHESIZED SILVER NANOPARTICLES AGAINST BACTERIAL SKIN PATHOGENS

    No full text
      Objective: Bacterial skin infection is one of the most common causes of childhood morbidity in India. Mostly, it is caused by Streptococcus and Staphylococcus infections. However, because of antibiotic resistance in bacterial strains, treatment of skin infections is becoming increasingly difficult. The objective of this research is to study the effect of plant extract concentration on synthesis and morphology of biological silver nanoparticles and investigation of their activity against bacterial skin pathogens.Methods: Biological silver nanoparticles were synthesized using two concentrations (5 and 10 ml) of Aegle marmelos fruit pulp extract. Ultraviolet (UV)-visible spectroscopy, field emission scanning microscopy (FESEM), and high resolution transmission electron microscopy (HRTEM) were used to analyze morphological features of nanoparticles. Antibacterial activity of synthesized silver nanoparticles was studied against the most common skin pathogens Staphylococcus aureus and Streptococcus pyogen, using a well diffusion method.Results: The silver nanoparticles synthesized from 5 ml extract showed UV-absorbance peak at 430 nm with 14-18 nm size, while silver nanoparticles synthesized from 10 ml extract was showed the absorbance at 427 nm with 4-8 nm size. FESEM and HRTEM analysis revealed that both the silver nanoparticles were spherical in shape. Both nanoparticles have shown antibacterial activity among them silver nanoparticles synthesized from 10 ml extract showed better antibacterial activity.Conclusion: This research confirms that plant extract concentration modulate the rate of synthesis, morphology, surface plasmon resonance, and activity of biological silver nanoparticles. Silver nanoparticles synthesized from 10 ml extract can be used efficiently in the treatment of bacterial skin infections

    EVALUATION OF IN VITRO CYTOTOXIC EFFECT OF VIOLACEIN PRODUCED BY NOVEL ISOLATE CHROMOBACTERIUM VACCINII CV5 AGAINST THE CERVICAL AND LUNG CANCER CELL

    No full text
      Objectives: This study investigates the in vitro anticancer activity of the violacein extracted from the Chromobacterium vaccinii CV5.Methods: Natural colorants or dyes derived from flora to fauna are believed to be safe because of nontoxic, noncarcinogenic, and biodegradable in nature. There are a number of natural pigments, but only a few are available in sufficient quantities for industrial production. The cytotoxicity activity of pigment was assessed against the cervical (HeLa) and lung cancer (A549) cell lines using the MTT assay and there by potential cytotoxic activity exhibited by the pigment was identified.Results: The result of the pigment shows potent anticancer activity on the two cancer cell lines tested in a concentration dependent manner. The potent anticancer activity was observed with the pigment with IC50 values of 26 μg/mL on HeLa and 31 μg/mL on A549 cells, respectively.Conclusion: The study is pioneering report for determining the better in vitro anticancer activity of violacein from the novel isolate C. vaccinii CV5

    Production of Xylanase by Litter Degrading Fungal Species Using Agro-industrial Wastes as Substrates by Solid State Fermentation

    No full text
    ABSTRACT Xylan is a heterogeneous polysaccharide which are mainly constituted by β-1,4-linked-D-xylopyranose. Xylan forms a main constituent of hemicellulose, a plant polysaccharide. The most important enzyme in the xylan biodegradation is the endo-1, 4-β-xylanase (EC 3.2.1.8) that releases xylopyranose units. Agricultural wastes are found in staggering amounts in our country. These residues represent one of the most energy-rich resources available and when not properly discharged or used, add to environmental pollution. In the present study, thirty fungal species of various genera were isolated from litter soil. The objective of the study is to find the fungus that produces high titres of endo-β-1, 4-xylanase in solid state fermentation using various agro-industrial wastes as substrate. Three fungal species were selected and solid state fermentation was carried out. Aspergillus nidulans and Trichoderma viride produced higher enzyme production of 561.75 U/g and 446.25 U/g respectively when grown on rice bran. Penicillium frequentans produced the highest among the three producers when grown on paddy straw to an extent of 735 U/g. These results indicate that agro-industrial wastes can be used to produce xylanase and thus reduce the risk of environmental pollution

    Current strategies and prospects in algae for remediation and biofuels: an overview

    No full text
    Phycoremediation is an environmentally sustainable method that utilizes macro and microalgae to remediate polluted land and water. Phycoremediation consists of two elements: the microbial niche around the algae and the second by the algae itself, which absorb and degrade the toxic pollutants into less or non-toxic components. The advanced gene cloning technology on algae could improve gene efficiency and produce the active xenobiotic degrading enzyme. As a result, remedial rates have improved, allowing large areas of contaminated sites to be addressed in the process of large-scale application. Many organizations worldwide are already focusing on this bioremediation element, special attention on algae to replace the costly physical or chemical remediation methods. Thus, this review reported the Scenedesmus sp. algae used in the polluted tannery site, and the maximum removal was observed in Pb: 75-98% and Zn: 65-98%. Scenedesmus obliquus illustrated the significant Fe3+ (100%) removal applied in the polluted soil. Moreover, since nuclear and chloroplast transformations are important in commercial applications, C. reinhardtii remains the most effective transgenic algae applied for pollutant deduction. It was discovered that Chlorella, Chlamydomonas, and Scenedesmus sp. had the highest pollutant removal efficacy in medicine polluted sites. Furthermore, Kirchneriella sp. and Enteromorpha clathrate were observed to have the largest algal oil yield than other algal species.National Natural Science Foundation of China (NSFC) 51876083; 51776088. Priority Academic Program Development of Jiangsu High Education Institutions; High-tech Research Key laboratory of Zhenjiang SS2018002info:eu-repo/semantics/publishedVersio

    Exploring the Nutritional Potential of Wild Grass Fodder for Mega Herbivore (Elephas maximus) in the Foothills of Western Ghats

    No full text
    An elephant, being a mega herbivore, consumes large amounts of food. Due to the lack of availability of fodder inside the forest, the elephants move out of their habitat areas and also find agricultural crops attractive, which further results in man–animal conflict. To improve the elephant habitat area, the current study was conducted to assess the availability of native fodder grasses inside the Coimbatore Elephant Reserve, Western Ghats, from April 2021–April 2022. The area falls between 10°37′and 11°31′ North latitudes and 76°39′and 77°5′ East longitudes. It was approached in a systematic random sampling method. A total of 128 sample plots of 1 sq.m size were randomly placed, and the density of grass species was recorded in percentage (%). The collected samples were shade dried for one week, ground to pass through a 1 mm sieve, and stored in polythene bags. Furthermore, the samples were chemically analyzed to determine their nutritional values. The dry matter (DM) content of various grass fodder varied from 28.18% to 59.75%. The crude protein (CP) content differed between 5.94% and 11.94%. The highest CP was recorded in Cynodon dactylon (11.94%) and the least in Aristida setacea (5.94%). Ether extract content was found in the ranges of 1.00% to 5.00%. The acid detergent fibre (ADF) content of Aristida setacea (45.74%) was observed as the highest, whereas the lowest was observed in Oplismenus burmannii (26.78%), followed by Themeda triandra (26.85%), Heteropogon contortus (30.12%) and Enteropogon monostachyos (30.31%). The average neutral detergent fibre content of grass fodder was 52.27%, with a range of 37.89% (Oplismenus burmannii) to 67.87% (Cymbopogon martinii). The average total digestible nutrient (TDN) content of grass was 77.45%; relative forage quality (RFQ) exhibited wider variations among the grasses and ranged between 107.51 and 198.83. This study is a pioneer in evaluating the nutritional values of native grass fodder species for elephants in the Western Ghats. The study gives strategies for the selection of high nutritive fodder grass for the habitat improvement of elephants, and it also provides scientific and baseline information for the conservation of native grass fodder species in the Western Ghats
    corecore