2 research outputs found

    Allergens derived from shrimp

    Get PDF
    Allergy caused by food is usually type 1 allergy of four types of allergic reactions. One of the most widespread allergic is those that are caused by crustacean shellfish. Crustaceans are classified among arthropods which include crab, crayfish, lobster, prawn and shrimp. Shrimp which are broadly consumed as nutritional food is one of the most important food that contribute to allergy. Thus, reducing the allergenicity of shrimp allergen will be helpful to individuals who are sensitive to shrimp and for this reason the characteristics of each allergen need to be studied. Those sensitized individuals can develop urticaria, angiodema, laryngospasm, asthma and life threatening anaphylaxis. To date, four main allergens contribute to allergic reactions. They are tropomyosin (TM), a highly conserved and heat stable myofibrillar protein of 35-38 kDa followed by arginine kinase (AK) which is also known as Pen m 2 or Lit v 2 with 40 kDa. Two other contributing allergens are sarcoplasmic calcium-binding protein (SCP) also known as Lit v 4 with 22 kDa and myosin light chain (MLC) which is also termed as Lit v 3 with 20 kDa. This mini-review will provide a better understanding of each allergen derived from shrimp which subsequently will help to reduce the allergenicity

    Effects of gamma irradiation on tropomyosin allergen, proximate composition and mineral elements in giant freshwater prawn (Macrobrachium rosenbergii)

    Get PDF
    Effects of food irradiation on allergen and nutritional composition of giant freshwater prawn are not well documented. Thus, this study aimed to investigate the effects of gamma irradiation on tropomyosin allergen, proximate composition, and mineral elements in Macrobrachium rosenbergii. In this study, prawn was peeled, cut into small pieces, vacuum packaged and gamma irradiated at 0, 5, 7, 10 and 15 kGy with a dose rate of 0.5 kGy/h using cobalt-60 as the source, subsequently determined the level of tropomyosin, proximate composition and mineral elements respectively. The results showed that band density of tropomyosin irradiated at 10 and 15 kGy is markedly decreased. Proximate analysis revealed that moisture, protein, and carbohydrate content were significantly different as compared with non-irradiated prawn. Meanwhile, gamma irradiated M. rosenbergii at 15 kGy was observed to be significantly higher in nickel and zinc than the non-irradiated prawn. The findings provide a new information that food irradiation may affect the tropomyosin allergen, proximate composition and mineral elements of the prawn
    corecore