24 research outputs found

    Phenotypic Plasticity and Effects of Selection on Cell Division Symmetry in Escherichia coli

    Get PDF
    Aging has been demonstrated in unicellular organisms and is presumably due to asymmetric distribution of damaged proteins and other components during cell division. Whether the asymmetry-induced aging is inevitable or an adaptive and adaptable response is debated. Although asymmetric division leads to aging and death of some cells, it increases the effective growth rate of the population as shown by theoretical and empirical studies. Mathematical models predict on the other hand, that if the cells divide symmetrically, cellular aging may be delayed or absent, growth rate will be reduced but growth yield will increase at optimum repair rates. Therefore in nutritionally dilute (oligotrophic) environments, where growth yield may be more critical for survival, symmetric division may get selected. These predictions have not been empirically tested so far. We report here that Escherichia coli grown in oligotrophic environments had greater morphological and functional symmetry in cell division. Both phenotypic plasticity and genetic selection appeared to shape cell division time asymmetry but plasticity was lost on prolonged selection. Lineages selected on high nutrient concentration showed greater frequency of presumably old or dead cells. Further, there was a negative correlation between cell division time asymmetry and growth yield but there was no significant correlation between asymmetry and growth rate. The results suggest that cellular aging driven by asymmetric division may not be hardwired but shows substantial plasticity as well as evolvability in response to the nutritional environment

    A Model for Damage Load and Its Implications for the Evolution of Bacterial Aging

    Get PDF
    Deleterious mutations appearing in a population increase in frequency until stopped by natural selection. The ensuing equilibrium creates a stable frequency of deleterious mutations or the mutational load. Here I develop the comparable concept of a damage load, which is caused by harmful non-heritable changes to the phenotype. A damage load also ensues when the increase of damage is opposed by selection. The presence of a damage load favors the evolution of asymmetrical transmission of damage by a mother to her daughters. The asymmetry is beneficial because it increases fitness variance, but it also leads to aging or senescence. A mathematical model based on microbes reveals that a cell lineage dividing symmetrically is immortal if lifetime damage rates do not exceed a threshold. The evolution of asymmetry allows the lineage to persist above the threshold, but the lineage becomes mortal. In microbes with low genomic mutation rates, it is likely that the damage load is much greater than the mutational load. In metazoans with higher genomic mutation rates, the damage and the mutational load could be of the same magnitude. A fit of the model to experimental data shows that Escherichia coli cells experience a damage rate that is below the threshold and are immortal under the conditions examined. The model estimates the asymmetry level of E. coli to be low but sufficient for persisting at higher damage rates. The model also predicts that increasing asymmetry results in diminishing fitness returns, which may explain why the bacterium has not evolved higher asymmetry

    How Grandparents Matter: Support for the Cooperative Breeding Hypothesis in a Contemporary Dutch Population

    Get PDF
    Low birth rates in developed societies reflect women’s difficulties in combining work and motherhood. While demographic research has focused on the role of formal childcare in easing this dilemma, evolutionary theory points to the importance of kin. The cooperative breeding hypothesis states that the wider kin group has facilitated women’s reproduction during our evolutionary history. This mechanism has been demonstrated in pre-industrial societies, but there is no direct evidence of beneficial effects of kin’s support on parents’ reproduction in modern societies. Using three-generation longitudinal data anchored in a sample of grandparents aged 55 and over in 1992 in the Netherlands, we show that childcare support from grandparents increases the probability that parents have additional children in the next 8 to 10 years. Grandparental childcare provided to a nephew or niece of childless children did not significantly increase the probability that those children started a family. These results suggest that childcare support by grandparents can enhance their children’s reproductive success in modern societies and is an important factor in people’s fertility decisions, along with the availability of formal childcare

    Ockham’s razor for the MET-driven invasive growth linking idiopathic pulmonary fibrosis and cancer

    Full text link

    The Reproductive Ecology of Industrial Societies, Part I : Why Measuring Fertility Matters.

    Get PDF
    Is fertility relevant to evolutionary analyses conducted in modern industrial societies? This question has been the subject of a highly contentious debate, beginning in the late 1980s and continuing to this day. Researchers in both evolutionary and social sciences have argued that the measurement of fitness-related traits (e.g., fertility) offers little insight into evolutionary processes, on the grounds that modern industrial environments differ so greatly from those of our ancestral past that our behavior can no longer be expected to be adaptive. In contrast, we argue that fertility measurements in industrial society are essential for a complete evolutionary analysis: in particular, such data can provide evidence for any putative adaptive mismatch between ancestral environments and those of the present day, and they can provide insight into the selection pressures currently operating on contemporary populations. Having made this positive case, we then go on to discuss some challenges of fertility-related analyses among industrialized populations, particularly those that involve large-scale databases. These include "researcher degrees of freedom" (i.e., the choices made about which variables to analyze and how) and the different biases that may exist in such data. Despite these concerns, large datasets from multiple populations represent an excellent opportunity to test evolutionary hypotheses in great detail, enriching the evolutionary understanding of human behavior

    Family and fertility: kin influence on the progression to a second birth in the British Household Panel Study.

    Get PDF
    Particular features of human female life history, such as short birth intervals and the early cessation of female reproduction (menopause), are argued to be evidence that humans are 'cooperative breeders', with a reproductive strategy adapted to conditions where mothers receive substantial assistance in childraising. Evolutionary anthropologists have so far largely focussed on measuring the influence of kin on reproduction in natural fertility populations. Here we look at the effect in a present-day low-fertility population, by analysing whether kin affect parity progression in the British Household Panel Study. Two explanatory variables related to kin influence significantly increase the odds of a female having a second birth: i) having relatives who provide childcare and ii) having a larger number of frequently contacted and emotionally close relatives. Both effects were measured subject to numerous socio-economic controls and appear to be independent of one another. We therefore conclude that kin may influence the progression to a second birth. This influence is possibly due to two proximate mechanisms: kin priming through communication and kin assistance with childcare

    The Reproductive Ecology of Industrial Societies, Part II : The Association between Wealth and Fertility.

    Get PDF
    Studies of the association between wealth and fertility in industrial populations have a rich history in the evolutionary literature, and they have been used to argue both for and against a behavioral ecological approach to explaining human variability. We consider that there are strong arguments in favor of measuring fertility (and proxies thereof) in industrial populations, not least because of the wide availability of large-scale secondary databases. Such data sources bring challenges as well as advantages, however. The purpose of this article is to illustrate these by examining the association between wealth and reproductive success in the United States, using the National Longitudinal Study of Youth 1979. We conduct a broad-based exploratory analysis of the relationship between wealth and fertility, employing both cross-sectional and longitudinal approaches, and multiple measures of both wealth (income and net worth) and fertility (lifetime reproductive success and transitions to first, second and third births). We highlight the kinds of decisions that have to be made regarding sample selection, along with the selection and construction of explanatory variables and control measures. Based on our analyses, we find a positive effect of both income and net worth on fertility for men, which is more pronounced for white men and for transitions to first and second births. Income tends to have a negative effect on fertility for women, while net worth is more likely to positively predict fertility. Different reproductive strategies among different groups within the same population highlight the complexity of the reproductive ecology of industrial societies. These results differ in a number of respects from other analyses using the same database. We suggest this reflects the impossibility of producing a definitive analysis, rather than a failure to identify the "correct" analytical strategy. Finally, we discuss how these findings inform us about (mal)adaptive decision-making
    corecore