73 research outputs found
Differential regulation of Knotted1-like genes during establishment of the shoot apical meristem in Norway spruce (Picea abies)
Establishment of the shoot apical meristem (SAM) in Arabidopsis embryos requires the KNOXI transcription factor SHOOT MERISTEMLESS. In Norway spruce (Picea abies), four KNOXI family members (HBK1, HBK2, HBK3 and HBK4) have been identified, but a corresponding role in SAM development has not been demonstrated. As a first step to differentiate between the functions of the four Norway spruce HBK genes, we have here analyzed their expression profiles during the process of somatic embryo development. This was made both under normal embryo development and under conditions of reduced SAM formation by treatment with the polar auxin transport inhibitor NPA. Concomitantly with the formation of an embryonic SAM, the HBK2 and HBK4 genes displayed a significant up-regulation that was delayed by NPA treatment. In contrast, HBK1 and HBK3 were up-regulated prior to SAM formation, and their temporal expression was not affected by NPA. Ectopic expression of the four HBK genes in transgenic Arabidopsis plants further supported similar functions of HBK2 and HBK4, distinct from those of HBK1 and HBK3. Together, the results suggest that HBK2 and HBK4 exert similar functions related to the SAM differentiation and somatic embryo development in Norway spruce, while HBK1 and HBK3 have more general functions during embryo development
Plasmodium falciparum metacaspase PfMCA-1 triggers a z-VAD-fmk inhibitable protease to promote cell death.
Activation of proteolytic cell death pathways may circumvent drug resistance in deadly protozoan parasites such as Plasmodium falciparum and Leishmania. To this end, it is important to define the cell death pathway(s) in parasites and thus characterize proteases such as metacaspases (MCA), which have been reported to induce cell death in plants and Leishmania parasites. We, therefore, investigated whether the cell death function of MCA is conserved in different protozoan parasite species such as Plasmodium falciparum and Leishmania major, focusing on the substrate specificity and functional role in cell survival as compared to Saccharomyces cerevisae. Our results show that, similarly to Leishmania, Plasmodium MCA exhibits a calcium-dependent, arginine-specific protease activity and its expression in yeast induced growth inhibition as well as an 82% increase in cell death under oxidative stress, a situation encountered by parasites during the host or when exposed to drugs such as artemisins. Furthermore, we show that MCA cell death pathways in both Plasmodium and Leishmania, involve a z-VAD-fmk inhibitable protease. Our data provide evidence that MCA from both Leishmania and Plasmodium falciparum is able to induce cell death in stress conditions, where it specifically activates a downstream enzyme as part of a cell death pathway. This enzymatic activity is also induced by the antimalarial drug chloroquine in erythrocytic stages of Plasmodium falciparum. Interestingly, we found that blocking parasite cell death influences their drug sensitivity, a result which could be used to create therapeutic strategies that by-pass drug resistance mechanisms by acting directly on the innate pathways of protozoan cell death
Cathepsin B-like and cell death in the unicellular human pathogen Leishmania
In several studies reporting cell death (CD) in lower eukaryotes and in the human protozoan parasite Leishmania, proteolytic activity was revealed using pan-caspase substrates or inhibitors such as carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). However, most of the lower eukaryotes do not encode caspase(s) but MCA, which differs from caspase(s) in its substrate specificity and cannot be accountable for the recognition of Z-VAD-FMK. In the present study, we were interested in identifying which enzyme was capturing the Z-VAD substrate. We show that heat shock (HS) induces Leishmania CD and leads to the intracellular binding of Z-VAD-FMK. We excluded binding and inhibition of Z-VAD-FMK to Leishmania major metacaspase (LmjMCA), and identified cysteine proteinase C (LmjCPC), a cathepsin B-like (CPC) enzyme, as the Z-VAD-FMK binding enzyme. We confirmed the specific interaction of Z-VAD-FMK with CPC by showing that Z-VAD binding is absent in a Leishmania mexicana strain in which the cpc gene was deleted. We also show that parasites exposed to various stress conditions release CPC into a soluble fraction. Finally, we confirmed the role of CPC in Leishmania CD by showing that, when exposed to the oxidizing agent hydrogen peroxide (H2O2), cpc knockout parasites survived better than wild-type parasites (WT). In conclusion, this study identified CPC as the substrate of Z-VAD-FMK in Leishmania and as a potential additional executioner protease in the CD cascade of Leishmania and possibly in other lower eukaryotes
The conservation and uniqueness of the caspase family in the basal chordate, amphioxus
<p>Abstract</p> <p>Background</p> <p>The caspase family, which plays a central role in apoptosis in metazoans, has undergone an expansion in amphioxus, increasing to 45 members through domain recombination and shuffling.</p> <p>Results</p> <p>In order to shed light on the conservation and uniqueness of this family in amphioxus, we cloned three representative caspase genes, designated as <it>bbtCaspase-8, bbtCaspase-1/2 </it>and <it>bbtCaspase3</it>-like, from the amphioxus <it>Branchiostoma belcheri tsingtauense</it>. We found that <it>bbtCaspase-8 </it>with conserved protein architecture is involved in the Fas-associated death domain-Caspase-8 mediated pro-apoptotic extrinsic pathway, while <it>bbtCaspase3</it>-like may mediate a nuclear apoptotic pathway in amphioxus. Also, <it>bbtCaspase-1/2 </it>can co-localize with <it>bbtFADD2 </it>in the nucleus, and be recruited to the cytoplasm by amphioxus apoptosis associated speck-like proteins containing a caspase recruitment domain, indicating that <it>bbtCaspase-1/2 </it>may serve as a switch between apoptosis and caspase-dependent innate immune response in invertebrates. Finally, amphioxus extrinsic apoptotic pathway related caspases played important roles in early embryogenesis.</p> <p>Conclusions</p> <p>Our study not only demonstrates the conservation of <it>bbtCaspase-8 </it>in apoptosis, but also reveals the unique features of several amphioxus caspases with novel domain architectures arose some 500 million years ago.</p
Lack of Trehalose Accelerates H2O2-Induced Candida albicans Apoptosis through Regulating Ca2+ Signaling Pathway and Caspase Activity
Trehalose is a non-reducing disaccharide and can be accumulated in response to heat or oxidative stresses in Candida albicans. Here we showed that a C. albicans tps1Δ mutant, which is deficient in trehalose synthesis, exhibited increased apoptosis rate upon H2O2 treatment together with an increase of intracellular Ca2+ level and caspase activity. When the intracellular Ca2+ level was stimulated by adding CaCl2 or A23187, both the apoptosis rate and caspase activity were increased. In contrast, the presence of two calcium chelators, EGTA and BAPTA, could attenuate these effects. Moreover, we investigated the role of Ca2+ pathway in C. albicans apoptosis and found that both calcineurin and the calcineurin-dependent transcription factor, Crz1p, mutants showed decreased apoptosis and caspase activity upon H2O2 treatment compared to the wild-type cells. Expression of CaMCA1, the only gene found encoding a C. albicans metacaspase, in calcineurin-deleted or Crz1p-deleted cells restored the cell sensitivity to H2O2. Our results suggest that Ca2+ and its downstream calcineurin/Crz1p/CaMCA1 pathway are involved in H2O2 -induced C. albicans apoptosis. Inhibition of this pathway might be the mechanism for the protective role of trehalose in C. albicans
- …