58 research outputs found
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
Short-Term Striatal Gene Expression Responses to Brain-Derived Neurotrophic Factor Are Dependent on MEK and ERK Activation
BACKGROUND: Brain-derived neurotrophic factor (BDNF) is believed to be an important regulator of striatal neuron survival, differentiation, and plasticity. Moreover, reduction of BDNF delivery to the striatum has been implicated in the pathophysiology of Huntington's disease. Nevertheless, many essential aspects of BDNF responses in striatal neurons remain to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we assessed the relative contributions of multipartite intracellular signaling pathways to the short-term induction of striatal gene expression by BDNF. To identify genes regulated by BDNF in these GABAergic cells, we first used DNA microarrays to quantify their transcriptomic responses following 3 h of BDNF exposure. The signal transduction pathways underlying gene induction were subsequently dissected using pharmacological agents and quantitative real-time PCR. Gene expression responses to BDNF were abolished by inhibitors of TrkB (K252a) and calcium (chelator BAPTA-AM and transient receptor potential cation channel [TRPC] antagonist SKF-96365). Interestingly, inhibitors of mitogen-activated protein kinase kinases 1 and 2 (MEK1/2) and extracellular signal-regulated kinase ERK also blocked the BDNF-mediated induction of all tested BDNF-responsive genes. In contrast, inhibitors of nitric oxide synthase (NOS), phosphotidylinositol-3-kinase (PI3K), and CAMK exhibited less prevalent, gene-specific effects on BDNF-induced RNA expression. At the nuclear level, the activation of both Elk-1 and CREB showed MEK dependence. Importantly, MEK-dependent activation of transcription was shown to be required for BDNF-induced striatal neurite outgrowth, providing evidence for its contribution to striatal neuron plasticity. CONCLUSIONS: These results show that the MEK/ERK pathway is a major mediator of neuronal plasticity and other important BDNF-dependent striatal functions that are fulfilled through the positive regulation of gene expression
Fluorescence decay of aromatic vapours. III. Single vibronic lifetimes and collision cross-sections for pyrimidine
In this paper the results
of a lifetime study of the 1B1 state of pyrimidine vapour
in the pressure range 1.2-60 Pa are presented. These lifetimes show an
extraordinary pressure dependence, with collision cross-sections of 30-40 times
hard sphere. It is shown that pyrimidine behaves as a small molecule. The
collision-induced decay process is intersystem crossing and it is the most
effective collision-induced process yet reported for the small-molecule limit.</jats:p
Fluorescence decay of aromatic vapours. IV. Lifetime measurements on three further azabenzenes
On the reliability of fluorescence decay data
The confidence with which
fluorescence decay data can be interpreted is dependent upon the accuracy and
precision of these data. This dependence is especially critical when more than
one exponential is involved in the decay.1,2 Unfortunately decay
curve parameters have often been presented without any indication of either
their accuracy or precision. An analysis is presented which suggests that the
covariance ellipsoid is the most satisfactory statistic with which to define
the precision.
</jats:p
Brazil nut effect and excluded volume attraction in vibrofluidized granular mixtures
A two dimensional bi-disperse vibrofluidized granular mixture is studied in the rapid flow regime, where particle interactions occur due to instantaneous collisions. Both experiments and simulations are carried out, and these show the existence of two phenomena which have been observed only in very dense granular flows or in equilibrium systems. The Brazil nut phenomenon, which involves the rise of larger particles in a granular mixture upon vibration, has been observed in dense systems due to the percolation of small particles though the interstitial spaces between the large particles, or due to convection rolls. In the present case, where neither effect is present, it is observed that the fluidization of the smaller particles by vibration results in an exponentially decaying density profile, at heights large compared to the particle diameter, and there by a pressure field that decreases with height. The larger particles, suspended in this decaying pressure field, experience a larger pressure at the bottom and a smaller pressure on top, and they rise to a height where the net force caused by the decreasing pressure is balanced by the weight of the particle. An attractive force between the large particles, similar to the entropic attraction effect in mixtures of colloids and polymers, is also observed in this non equilibrium system, because when the distance between the large particles is less than the small particle diameter,the pressure between the large particles is smaller than that on the outside. Analytical results are derived for each of these effects, and these are in agreement with the experimental and simulation results
Report on the IUTAM Symposium on Mobile Particulate Systems: Kinematics, Rheology, and Complex Phenomena, Bangalore, India, 2012
This report summarizes the presentations and discussions conducted during the symposium, which was held under the aegis of the International Union of Theoretical and Applied Mechanics during 23-27 January 2012 in Bangalore, India. (C) 2013 AIP Publishing LLC
- …
