29 research outputs found

    Aggregatibacter actinomycetemcomitans Omp29 Is Associated with Bacterial Entry to Gingival Epithelial Cells by F-Actin Rearrangement

    Get PDF
    The onset and progressive pathogenesis of periodontal disease is thought to be initiated by the entry of Aggregatibacter actinomycetemcomitans (Aa) into periodontal tissue, especially gingival epithelium. Nonetheless, the mechanism underlying such bacterial entry remains to be clarified. Therefore, this study aimed to investigate the possible role of Aa outer membrane protein 29 kD (Omp29), a homologue of E. coli OmpA, in promoting bacterial entry into gingival epithelial cells. To accomplish this, Omp29 expression vector was incorporated in an OmpA-deficient mutant of E. coli. Omp29+/OmpAβˆ’ E. coli demonstrated 22-fold higher entry into human gingival epithelial line cells (OBA9) than Omp29βˆ’/OmpAβˆ’ E. coli. While the entry of Aa and Omp29+/OmpAβˆ’ E. coli into OBA9 cells were inhibited by anti-Omp29 antibody, their adherence to OBA9 cells was not inhibited. Stimulation of OBA9 cells with purified Omp29 increased the phosphorylation of focal adhesion kinase (FAK), a pivotal cell-signaling molecule that can up-regulate actin rearrangement. Furthermore, Omp29 increased the formation of F-actin in OBA9 cells. The internalization of Omp29-coated beads and the entry of Aa into OBA9 were partially inhibited by treatment with PI3-kinase inhibitor (Wortmannin) and Rho GTPases inhibitor (EDIN), both known to convey FAK-signaling to actin-rearrangement. These results suggest that Omp29 is associated with the entry of Aa into gingival epithelial cells by up-regulating F-actin rearrangement via the FAK signaling pathway

    Association between Selected Oral Pathogens and Gastric Precancerous Lesions

    Get PDF
    We examined whether colonization of selected oral pathogens is associated with gastric precancerous lesions in a cross-sectional study. A total of 119 participants were included, of which 37 were cases of chronic atrophic gastritis, intestinal metaplasia, or dysplasia. An oral examination was performed to measure periodontal indices. Plaque and saliva samples were tested with real-time quantitative PCR for DNA levels of pathogens related to periodontal disease (Porphyromonas gingivalis, Tannerella forsythensis, Treponema denticola, Actinobacillus actinomycetemcomitans) and dental caries (Streptococcus mutans and S. sobrinus). There were no consistent associations between DNA levels of selected bacterial species and gastric precancerous lesions, although an elevated but non-significant odds ratio (OR) for gastric precancerous lesions was observed in relation to increasing colonization of A. actinomycetemcomitans (ORβ€Š=β€Š1.36 for one standard deviation increase, 95% Confidence Intervalβ€Š=β€Š0.87–2.12), P. gingivalis (ORβ€Š=β€Š1.12, 0.67–1.88) and T. denticola (ORβ€Š=β€Š1.34, 0.83–2.12) measured in plaque. To assess the influence of specific long-term infection, stratified analyses by levels of periodontal indices were conducted. A. actinomycetemcomitans was significantly associated with gastric precancerous lesions (ORβ€Š=β€Š2.51, 1.13–5.56) among those with β‰₯ median of percent tooth sites with PDβ‰₯3 mm, compared with no association among those below the median (ORβ€Š=β€Š0.86, 0.43–1.72). A significantly stronger relationship was observed between the cumulative bacterial burden score of periodontal disease-related pathogens and gastric precancerous lesions among those with higher versus lower levels of periodontal disease indices (p-values for interactions: 0.03–0.06). Among individuals with periodontal disease, high levels of colonization of periodontal pathogens are associated with an increased risk of gastric precancerous lesions
    corecore