12 research outputs found

    Elevated Plasma Corticosterone Decreases Yolk Testosterone and Progesterone in Chickens: Linking Maternal Stress and Hormone-Mediated Maternal Effects

    Get PDF
    Despite considerable research on hormone-mediated maternal effects in birds, the underlying physiology remains poorly understood. This study investigated a potential regulation mechanism for differential accumulation of gonadal hormones in bird eggs. Across vertebrates, glucocorticoids can suppress reproduction by downregulating gonadal hormones. Using the chicken as a model species, we therefore tested whether elevated levels of plasma corticosterone in female birds influence the production of gonadal steroids by the ovarian follicles and thus the amount of reproductive hormones in the egg yolk. Adult laying hens of two different strains (ISA brown and white Leghorn) were implanted subcutaneously with corticosterone pellets that elevated plasma corticosterone concentrations over a period of nine days. Steroid hormones were subsequently quantified in plasma and yolk. Corticosterone-implanted hens of both strains had lower plasma progesterone and testosterone levels and their yolks contained less progesterone and testosterone. The treatment also reduced egg and yolk mass. Plasma estrogen concentrations decreased in white Leghorns only whereas in both strains yolk estrogens were unaffected. Our results demonstrate for the first time that maternal plasma corticosterone levels influence reproductive hormone concentrations in the yolk. Maternal corticosterone could therefore mediate environmentally induced changes in yolk gonadal hormone concentrations. In addition, stressful situations experienced by the bird mother might affect the offspring via reduced amounts of reproductive hormones present in the egg as well as available nutrients for the embryo

    Reduced blood parasite prevalence with age in the Seychelles Warbler: selective mortality or suppression of infection?

    Get PDF
    Avian malaria can affect survival and reproduction of their hosts. Two patterns commonly observed in birds are that females have a higher prevalence of malaria than do males and that prevalence decreases with age. The mechanisms behind these patterns remain unclear. However, most studies on blood parasite infections are based on cross-sectional analyses of prevalence, ignoring malaria related mortality and individual changes in infection. Here, we analyse both within-individual changes in malaria prevalence and long-term survival consequences of infection in the Seychelles Warbler (Acrocephalus sechellensis). Adults were less likely to be infected than juveniles but, contrary to broad patterns previously reported in birds, females were less likely to be infected than males. We show by screening individual birds in two subsequent years that the decline with age is a result both of individual suppression of infection and selective mortality. Birds that were infected early in life had a lower survival rate compared to uninfected birds, but among those that survived to be screened twice the proportion of infected birds had also decreased. Uninfected birds did not become infected later in life. Males were found to be more infected than females in this species possibly because, unlike most birds, males are the dispersing sex and the cost of dispersal may have to be traded against immunity. Infected males took longer to suppress their infection than did females. We conclude that these infections are indeed costly, and that age-related patterns in blood parasite prevalence are influenced both by suppression and selective mortality.
    corecore