58 research outputs found

    Lack of Support for the Genes by Early Environment Interaction Hypothesis in the Pathogenesis of Schizophrenia

    Get PDF
    Ursini et al reported recently that the liability of schizophrenia explained by a polygenic risk score (PRS) derived from the variants most associated with schizophrenia was increased 5-fold in individuals who experienced complications during pregnancy or birth. Follow-up gene expression analysis showed that the genes mapping to the most associated genetic variants are highly expressed in placental tissues. If confirmed, these findings will have major implications in our understanding of the joint effect of genes and environment in the pathogenesis of schizophrenia. We examined the interplay between PRS and obstetric complications (OCs) in 5 independent samples (effective N = 2110). OCs were assessed with the full or modified Lewis-Murray scale, or with birth weight < 2.5 kg as a proxy. In a large cohort we tested whether the pathways from placenta-relevant variants in the original report were associated with case-control status. Unlike in the original study, we did not find significant effect of PRS on the presence of OCs in cases, nor a substantial difference in the association of PRS with case-control status in samples stratified by the presence of OCs. Furthermore, none of the PRS by OCs interactions were significant, nor were any of the biological pathways, examined in the Swedish cohort. Our study could not support the hypothesis of a mediating effect of placenta biology in the pathway from genes to schizophrenia. Methodology differences, in particular the different scales measuring OCs, as well as power constraints for interaction analyses in both studies, may explain this discrepancy

    Pathogen reduction/inactivation of products for the treatment of bleeding disorders:what are the processes and what should we say to patients?

    Get PDF
    Patients with blood disorders (including leukaemia, platelet function disorders and coagulation factor deficiencies) or acute bleeding receive blood-derived products, such as red blood cells, platelet concentrates and plasma-derived products. Although the risk of pathogen contamination of blood products has fallen considerably over the past three decades, contamination is still a topic of concern. In order to counsel patients and obtain informed consent before transfusion, physicians are required to keep up to date with current knowledge on residual risk of pathogen transmission and methods of pathogen removal/inactivation. Here, we describe pathogens relevant to transfusion of blood products and discuss contemporary pathogen removal/inactivation procedures, as well as the potential risks associated with these products: the risk of contamination by infectious agents varies according to blood product/region, and there is a fine line between adequate inactivation and functional impairment of the product. The cost implications of implementing pathogen inactivation technology are also considered
    • 

    corecore