33,963 research outputs found

    Conformal and gauge invariant spin-2 field equations

    Full text link
    Using an approach based on the Casimir operators of the de Sitter group, the conformal invariant equations for a fundamental spin-2 field are obtained, and their consistency discussed. It is shown that, only when the spin-2 field is interpreted as a 1-form assuming values in the Lie algebra of the translation group, rather than a symmetric second-rank tensor, the field equation is both conformal and gauge invariant.Comment: 12 pages, no figures; accepted for publication in Gravitation & Cosmolog

    Quantized fields and gravitational particle creation in f(R) expanding universes

    Get PDF
    The problem of cosmological particle creation for a spatially flat, homogeneous and isotropic Universes is discussed in the context of f(R) theories of gravity. Different from cosmological models based on general relativity theory, it is found that a conformal invariant metric does not forbid the creation of massless particles during the early stages (radiation era) of the Universe.Comment: 14 pages, 2 figure

    Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach

    Get PDF
    Teleparallel gravity and its popular generalization f(T)f(T) gravity can be formulated as fully invariant (under both coordinate transformations and local Lorentz transformations) theories of gravity. Several misconceptions about teleparallel gravity and its generalizations can be found in the literature, especially regarding their local Lorentz invariance. We describe how these misunderstandings may have arisen and attempt to clarify the situation. In particular, the central point of confusion in the literature appears to be related to the inertial spin connection in teleparallel gravity models. While inertial spin connections are commonplace in special relativity, and not something inherent to teleparallel gravity, the role of the inertial spin connection in removing the spurious inertial effects within a given frame of reference is emphasized here. The careful consideration of the inertial spin connection leads to the construction of a fully invariant theory of teleparallel gravity and its generalizations. Indeed, it is the nature of the spin connection that differentiates the relationship between what have been called good tetrads and bad tetrads and clearly shows that, in principle, any tetrad can be utilized. The field equations for the fully invariant formulation of teleparallel gravity and its generalizations are presented and a number of examples using different assumptions on the frame and spin connection are displayed to illustrate the covariant procedure. Various modified teleparallel gravity models are also briefly reviewed.Comment: v2: 72 pages, revised version, references added, matches published versio

    Boundary versus bulk behavior of time-dependent correlation functions in one-dimensional quantum systems

    Get PDF
    We study the influence of reflective boundaries on time-dependent responses of one-dimensional quantum fluids at zero temperature beyond the low-energy approximation. Our analysis is based on an extension of effective mobile impurity models for nonlinear Luttinger liquids to the case of open boundary conditions. For integrable models, we show that boundary autocorrelations oscillate as a function of time with the same frequency as the corresponding bulk autocorrelations. This frequency can be identified as the band edge of elementary excitations. The amplitude of the oscillations decays as a power law with distinct exponents at the boundary and in the bulk, but boundary and bulk exponents are determined by the same coupling constant in the mobile impurity model. For nonintegrable models, we argue that the power-law decay of the oscillations is generic for autocorrelations in the bulk, but turns into an exponential decay at the boundary. Moreover, there is in general a nonuniversal shift of the boundary frequency in comparison with the band edge of bulk excitations. The predictions of our effective field theory are compared with numerical results obtained by time-dependent density matrix renormalization group (tDMRG) for both integrable and nonintegrable critical spin-SS chains with S=1/2S=1/2, 11 and 3/23/2.Comment: 20 pages, 12 figure

    Gravitomagnetic Moments of the Fundamental Fields

    Full text link
    The quadratic form of the Dirac equation in a Riemann spacetime yields a gravitational gyromagnetic ratio \kappa_S = 2 for the interaction of a Dirac spinor with curvature. A gravitational gyromagnetic ratio \kappa_S = 1 is also found for the interaction of a vector field with curvature. It is shown that the Dirac equation in a curved background can be obtained as the square--root of the corresponding vector field equation only if the gravitational gyromagnetic ratios are properly taken into account.Comment: 8 pages, RevTeX Style, no figures, changed presentation -- now restricted to fields of spin 0, 1/2 and 1 -- some references adde

    Bringing Together Gravity and the Quanta

    Get PDF
    Due to its underlying gauge structure, teleparallel gravity achieves a separation between inertial and gravitational effects. It can, in consequence, describe the isolated gravitational interaction without resorting to the equivalence principle, and is able to provide a tensorial definition for the energy-momentum density of the gravitational field. Considering the conceptual conflict between the local equivalence principle and the nonlocal uncertainty principle, the replacement of general relativity by its teleparallel equivalent can be considered an important step towards a prospective reconciliation between gravitation and quantum mechanics.Comment: 9 pages. Contribution to the proceedings of the Albert Einstein Century International Conference, Paris, 18-22 July, 200
    • …
    corecore