38 research outputs found

    Small bowel adenocarcinoma in a patient with Coeliac disease: A case report

    Get PDF
    Coeliac disease is a chronic inflammatory disease of the gut with increased risk of gastrointestinal malignancy. Although enteropathy T-lymphoma is the most common neoplasm in patient affected by coeliac disease, an increased frequency of small bowel carcinoma has been described. We present a case of jejunal carcinoma in a patient suffering for coeliac disease in which gastrointestinal and extraintestinal symptoms of disease developed although he was treated with a gluten-free diet

    Small intestinal mucosa expression of putative chaperone fls485

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maturation of enterocytes along the small intestinal crypt-villus axis is associated with significant changes in gene expression profiles. <it>fls485 </it>coding a putative chaperone protein has been recently suggested as a gene involved in this process. The aim of the present study was to analyze <it>fls48</it>5 expression in human small intestinal mucosa.</p> <p>Methods</p> <p><it>fls485 </it>expression in purified normal or intestinal mucosa affected with celiac disease was investigated with a molecular approach including qRT-PCR, Western blotting, and expression strategies. Molecular data were corroborated with several <it>in situ </it>techniques and usage of newly synthesized mouse monoclonal antibodies.</p> <p>Results</p> <p>fls485 mRNA expression was preferentially found in enterocytes and chromaffine cells of human intestinal mucosa as well as in several cell lines including Rko, Lovo, and CaCo2 cells. Western blot analysis with our new anti-fls485 antibodies revealed at least two fls485 proteins. In a functional CaCo2 model, an increase in fls485 expression was paralleled by cellular maturation stage. Immunohistochemistry demonstrated fls485 as a cytosolic protein with a slightly increasing expression gradient along the crypt-villus axis which was impaired in celiac disease Marsh IIIa-c.</p> <p>Conclusions</p> <p>Expression and synthesis of fls485 are found in surface lining epithelia of normal human intestinal mucosa and deriving epithelial cell lines. An interdependence of enterocyte differentiation along the crypt-villus axis and fls485 chaperone activity might be possible.</p

    Organotypical tissue cultures from adult murine colon as an in vitro model of intestinal mucosa

    Get PDF
    Together with animal experiments, organotypical cell cultures are important models for analyzing cellular interactions of the mucosal epithelium and pathogenic mechanisms in the gastrointestinal tract. Here, we introduce a three-dimensional culture model from the adult mouse colon for cell biological investigations in an in vivo-like environment. These explant cultures were cultured for up to 2 weeks and maintained typical characteristics of the intestinal mucosa, including a high-prismatic epithelium with specific epithelial cell-to-cell connections, a basal lamina and various connective tissue cell types, as analyzed with immunohistological and electron microscopic methods. The function of the epithelium was tested by treating the cultures with dexamethasone, which resulted in a strong upregulation of the serum- and glucocorticoid-inducible kinase 1 similar to that found in vivo. The culture system was investigated in infection experiments with the fungal pathogen Candida albicans. Wildtype but not Δcph1/Δefg1-knockout Candida adhered to, penetrated and infiltrated the epithelial barrier. The results demonstrate the potential usefulness of this intestinal in vitro model for studying epithelial cell-cell interactions, cellular signaling and microbiological infections in a three-dimensional cell arrangement

    A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients

    Get PDF
    The celiac disease (CD) is an inflammatory condition characterized by injury to the lining of the small-intestine on exposure to the gluten of wheat, barley and rye. The involvement of gluten in the CD syndrome has been studied in detail in bread wheat, where a set of “toxic” and “immunogenic” peptides has been defined. For wheat diploid species, information on CD epitopes is poor. In the present paper, we have adopted a genomic approach in order to understand the potential CD danger represented by storage proteins in diploid wheat and sequenced a sufficiently large number of cDNA clones related to storage protein genes of Triticum monococcum. Four bona fide toxic peptides and 13 immunogenic peptides were found. All the classes of storage proteins were shown to contain harmful sequences. The major conclusion is that einkorn has the full potential to induce the CD syndrome, as already evident for polyploid wheats. In addition, a complete overview of the storage protein gene arsenal in T. monococcum is provided, including a full-length HMW x-type sequence and two partial HMW y-type sequences

    Cancer of the Pancreas

    Full text link
    corecore