54 research outputs found

    The Genetics Journey: A Case Report of a Genetic Diagnosis Made 30 Years Later

    Full text link
    Mandibulofacial dysostosis with microcephaly (MFDM) is a rare autosomal dominant condition that was first described in 2006. The causative gene, EFTUD2, identified in 2012. We report on a family that initially presented to a pediatric genetics clinic in the 1980s for evaluation of multiple congenital anomalies. Re‐evaluation of one member thirty years later resulted in a phenotypic and molecularly confirmed diagnosis of MFDM. This family’s clinical histories and the novel EFTUD2 variant identified, c.1297_1298delAT (p.Met433Valfs*17), add to the literature about MFDM. This case presented several genetic counseling challenges and highlights that “the patient” can be multiple family members. We discuss testing considerations for an unknown disorder complicated by the time constraint of the patient’s daughter’s pregnancy and how the diagnosis changed previously provided recurrence risks. Of note, 1) the 1980s clinic visit letters provided critical information about affected family members and 2) the patient’s husband’s internet search of his wife’s clinical features also yielded the MFDM diagnosis, illustrating the power of the internet in the hands of patients. Ultimately, this case emphasizes the importance of re‐evaluation given advances in genetics and the value of a genetic diagnosis for both patient care and risk determination for family members.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147210/1/jgc40894.pd

    Ebola: translational science considerations

    Get PDF
    We are currently in the midst of the most aggressive and fulminating outbreak of Ebola-related disease, commonly referred to as “Ebola”, ever recorded. In less than a year, the Ebola virus (EBOV, Zaire ebolavirus species) has infected over 10,000 people, indiscriminately of gender or age, with a fatality rate of about 50%. Whereas at its onset this Ebola outbreak was limited to three countries in West Africa (Guinea, where it was first reported in late March 2014, Liberia, where it has been most rampant in its capital city, Monrovia and other metropolitan cities, and Sierra Leone), cases were later reported in Nigeria, Mali and Senegal, as well as in Western Europe (i.e., Madrid, Spain) and the US (i.e., Dallas, Texas; New York City) by late October 2014. World and US health agencies declared that the current Ebola virus disease (EVD) outbreak has a strong likelihood of growing exponentially across the world before an effective vaccine, treatment or cure can be developed, tested, validated and distributed widely. In the meantime, the spread of the disease may rapidly evolve from an epidemics to a full-blown pandemic. The scientific and healthcare communities actively research and define an emerging kaleidoscope of knowledge about critical translational research parameters, including the virology of EBOV, the molecular biomarkers of the pathological manifestations of EVD, putative central nervous system involvement in EVD, and the cellular immune surveillance to EBOV, patient-centered anthropological and societal parameters of EVD, as well as translational effectiveness about novel putative patient-targeted vaccine and pharmaceutical interventions, which hold strong promise, if not hope, to curb this and future Ebola outbreaks. This work reviews and discusses the principal known facts about EBOV and EVD, and certain among the most interesting ongoing or future avenues of research in the field, including vaccination programs for the wild animal vectors of the virus and the disease from global translational science perspective

    A missing link in the bench-to-bedside paradigm: engaging regulatory stakeholders in clinical genomics research

    Get PDF
    Editorial summary For genomic medicine research to be fully translated into clinical care, it is critical for researchers to engage stakeholders who ultimately regulate the use of genomic technologies and therapeutics within healthcare practice. Herein, we describe an example of how this might work

    Payer decision making for next-generation sequencing-based genetic tests: insights from cell-free DNA prenatal screening.

    Get PDF
    PurposeCell-free DNA (cfDNA) prenatal screening tests have been rapidly adopted into clinical practice, due in part to positive insurance coverage. We evaluated the framework payers used in making coverage decisions to describe a process that should be informative for other sequencing tests.MethodsWe analyzed coverage policies from the 19 largest US private payers with publicly available policies through February 2016, building from the University of California San Francisco TRANSPERS Payer Coverage Policy Registry.ResultsAll payers studied cover cfDNA screening for detection of trisomies 21, 18, and 13 in high-risk, singleton pregnancies, based on robust clinical validity (CV) studies and modeled evidence of clinical utility (CU). Payers typically evaluated the evidence for each chromosomal abnormality separately, although results are offered as part of a panel. Starting in August 2015, 8 of the 19 payers also began covering cfDNA screening in average-risk pregnancies, citing recent CV studies and updated professional guidelines. Most payers attempted, but were unable, to independently assess analytic validity (AV).ConclusionPayers utilized the standard evidentiary framework (AV/CV/CU) when evaluating cfDNA screening but varied in their interpretation of the sufficiency of the evidence. Professional guidelines, large CV studies, and decision analytic models regarding health outcomes appeared highly influential in coverage decisions.Genet Med advance online publication 22 September 2016
    corecore