11 research outputs found

    Identifying risk factors for COPD and adult-onset asthma: an umbrella review

    Get PDF
    BACKGROUND: COPD and adult-onset asthma (AOA) are the most common noncommunicable respiratory diseases. To improve early identification and prevention, an overview of risk factors is needed. We therefore aimed to systematically summarise the nongenetic (exposome) risk factors for AOA and COPD. Additionally, we aimed to compare the risk factors for COPD and AOA. METHODS: In this umbrella review, we searched PubMed for articles from inception until 1 February 2023 and screened the references of relevant articles. We included systematic reviews and meta-analyses of observational epidemiological studies in humans that assessed a minimum of one lifestyle or environmental risk factor for AOA or COPD. RESULTS: In total, 75 reviews were included, of which 45 focused on risk factors for COPD, 28 on AOA and two examined both. For asthma, 43 different risk factors were identified while 45 were identified for COPD. For AOA, smoking, a high body mass index (BMI), wood dust exposure and residential chemical exposures, such as formaldehyde exposure or exposure to volatile organic compounds, were amongst the risk factors found. For COPD, smoking, ambient air pollution including nitrogen dioxide, a low BMI, indoor biomass burning, childhood asthma, occupational dust exposure and diet were amongst the risk factors found. CONCLUSIONS: Many different factors for COPD and asthma have been found, highlighting the differences and similarities. The results of this systematic review can be used to target and identify people at high risk for COPD or AOA

    Long COVID exhibits clinically distinct phenotypes at 3-6 months post-SARS-CoV-2 infection: results from the P4O2 consortium

    Get PDF
    BACKGROUND: Four months after SARS-CoV-2 infection, 22%-50% of COVID-19 patients still experience complaints. Long COVID is a heterogeneous disease and finding subtypes could aid in optimising and developing treatment for the individual patient. METHODS: Data were collected from 95 patients in the P4O2 COVID-19 cohort at 3-6 months after infection. Unsupervised hierarchical clustering was performed on patient characteristics, characteristics from acute SARS-CoV-2 infection, long COVID symptom data, lung function and questionnaires describing the impact and severity of long COVID. To assess robustness, partitioning around medoids was used as alternative clustering. RESULTS: Three distinct clusters of patients with long COVID were revealed. Cluster 1 (44%) represented predominantly female patients (93%) with pre-existing asthma and suffered from a median of four symptom categories, including fatigue and respiratory and neurological symptoms. They showed a milder SARS-CoV-2 infection. Cluster 2 (38%) consisted of predominantly male patients (83%) with cardiovascular disease (CVD) and suffered from a median of three symptom categories, most commonly respiratory and neurological symptoms. This cluster also showed a significantly lower forced expiratory volume within 1 s and diffusion capacity of the lung for carbon monoxide. Cluster 3 (18%) was predominantly male (88%) with pre-existing CVD and diabetes. This cluster showed the mildest long COVID, and suffered from symptoms in a median of one symptom category. CONCLUSIONS: Long COVID patients can be clustered into three distinct phenotypes based on their clinical presentation and easily obtainable information. These clusters show distinction in patient characteristics, lung function, long COVID severity and acute SARS-CoV-2 infection severity. This clustering can help in selecting the most beneficial monitoring and/or treatment strategies for patients suffering from long COVID. Follow-up research is needed to reveal the underlying molecular mechanisms implicated in the different phenotypes and determine the efficacy of treatment

    A Systematic Review of Chest Imaging Findings in Long COVID Patients

    Get PDF
    Long COVID is the persistence of one or more COVID-19 symptoms after the initial viral infection, and there is evidence supporting its association with lung damage. In this systematic review, we provide an overview of lung imaging and its findings in long COVID patients. A PubMed search was performed on 29 September 2021, for English language studies in which lung imaging was performed in adults suffering from long COVID. Two independent researchers extracted the data. Our search identified 3130 articles, of which 31, representing the imaging findings of 342 long COVID patients, were retained. The most common imaging modality used was computed tomography (CT) (N = 249). A total of 29 different imaging findings were reported, which were broadly categorized into interstitial (fibrotic), pleural, airway, and other parenchymal abnormalities. A direct comparison between cases, in terms of residual lesions, was available for 148 patients, of whom 66 (44.6%) had normal CT findings. Although respiratory symptoms belong to the most common symptoms in long COVID patients, this is not necessarily linked to radiologically detectable lung damage. Therefore, more research is needed on the role of the various types of lung (and other organ) damage which may or may not occur in long COVID

    A Systematic Review of Chest Imaging Findings in Long COVID Patients

    Get PDF
    Long COVID is the persistence of one or more COVID-19 symptoms after the initial viral infection, and there is evidence supporting its association with lung damage. In this systematic review, we provide an overview of lung imaging and its findings in long COVID patients. A PubMed search was performed on 29 September 2021, for English language studies in which lung imaging was performed in adults suffering from long COVID. Two independent researchers extracted the data. Our search identified 3130 articles, of which 31, representing the imaging findings of 342 long COVID patients, were retained. The most common imaging modality used was computed tomography (CT) (N = 249). A total of 29 different imaging findings were reported, which were broadly categorized into interstitial (fibrotic), pleural, airway, and other parenchymal abnormalities. A direct comparison between cases, in terms of residual lesions, was available for 148 patients, of whom 66 (44.6%) had normal CT findings. Although respiratory symptoms belong to the most common symptoms in long COVID patients, this is not necessarily linked to radiologically detectable lung damage. Therefore, more research is needed on the role of the various types of lung (and other organ) damage which may or may not occur in long COVID

    Precision Medicine for More Oxygen (P4O2)-Study Design and First Results of the Long COVID-19 Extension

    Get PDF
    Introduction: The coronavirus disease 2019 (COVID-19) pandemic has led to the death of almost 7 million people, however, with a cumulative incidence of 0.76 billion, most people survive COVID-19. Several studies indicate that the acute phase of COVID-19 may be followed by persistent symptoms including fatigue, dyspnea, headache, musculoskeletal symptoms, and pulmonary functional-and radiological abnormalities. However, the impact of COVID-19 on long-term health outcomes remains to be elucidated. Aims: The Precision Medicine for more Oxygen (P4O2) consortium COVID-19 extension aims to identify long COVID patients that are at risk for developing chronic lung disease and furthermore, to identify treatable traits and innovative personalized therapeutic strategies for prevention and treatment. This study aims to describe the study design and first results of the P4O2 COVID-19 cohort. Methods: The P4O2 COVID-19 study is a prospective multicenter cohort study that includes nested personalized counseling intervention trial. Patients, aged 40-65 years, were recruited from outpatient post-COVID clinics from five hospitals in The Netherlands. During study visits at 3-6 and 12-18 months post-COVID-19, data from medical records, pulmonary function tests, chest computed tomography scans and biological samples were collected and questionnaires were administered. Furthermore, exposome data was collected at the patient's home and state-of-the-art imaging techniques as well as multi-omics analyses will be performed on collected data. Results: 95 long COVID patients were enrolled between May 2021 and September 2022. The current study showed persistence of clinical symptoms and signs of pulmonary function test/radiological abnormalities in post-COVID patients at 3-6 months post-COVID. The most commonly reported symptoms included respiratory symptoms (78.9%), neurological symptoms (68.4%) and fatigue (67.4%). Female sex and infection with the Delta, compared with the Beta, SARS-CoV-2 variant were significantly associated with more persisting symptom categories. Conclusions: The P4O2 COVID-19 study contributes to our understanding of the long-term health impacts of COVID-19. Furthermore, P4O2 COVID-19 can lead to the identification of different phenotypes of long COVID patients, for example those that are at risk for developing chronic lung disease. Understanding the mechanisms behind the different phenotypes and identifying these patients at an early stage can help to develop and optimize prevention and treatment strategies

    Precision Medicine for More Oxygen (P4O2)-Study Design and First Results of the Long COVID-19 Extension

    Get PDF
    Introduction: The coronavirus disease 2019 (COVID-19) pandemic has led to the death of almost 7 million people, however, with a cumulative incidence of 0.76 billion, most people survive COVID-19. Several studies indicate that the acute phase of COVID-19 may be followed by persistent symptoms including fatigue, dyspnea, headache, musculoskeletal symptoms, and pulmonary functional-and radiological abnormalities. However, the impact of COVID-19 on long-term health outcomes remains to be elucidated. Aims: The Precision Medicine for more Oxygen (P4O2) consortium COVID-19 extension aims to identify long COVID patients that are at risk for developing chronic lung disease and furthermore, to identify treatable traits and innovative personalized therapeutic strategies for prevention and treatment. This study aims to describe the study design and first results of the P4O2 COVID-19 cohort. Methods: The P4O2 COVID-19 study is a prospective multicenter cohort study that includes nested personalized counseling intervention trial. Patients, aged 40-65 years, were recruited from outpatient post-COVID clinics from five hospitals in The Netherlands. During study visits at 3-6 and 12-18 months post-COVID-19, data from medical records, pulmonary function tests, chest computed tomography scans and biological samples were collected and questionnaires were administered. Furthermore, exposome data was collected at the patient's home and state-of-the-art imaging techniques as well as multi-omics analyses will be performed on collected data. Results: 95 long COVID patients were enrolled between May 2021 and September 2022. The current study showed persistence of clinical symptoms and signs of pulmonary function test/radiological abnormalities in post-COVID patients at 3-6 months post-COVID. The most commonly reported symptoms included respiratory symptoms (78.9%), neurological symptoms (68.4%) and fatigue (67.4%). Female sex and infection with the Delta, compared with the Beta, SARS-CoV-2 variant were significantly associated with more persisting symptom categories. Conclusions: The P4O2 COVID-19 study contributes to our understanding of the long-term health impacts of COVID-19. Furthermore, P4O2 COVID-19 can lead to the identification of different phenotypes of long COVID patients, for example those that are at risk for developing chronic lung disease. Understanding the mechanisms behind the different phenotypes and identifying these patients at an early stage can help to develop and optimize prevention and treatment strategies

    Identifying risk factors for COPD and adult-onset asthma: an umbrella review

    Get PDF
    BACKGROUND: COPD and adult-onset asthma (AOA) are the most common noncommunicable respiratory diseases. To improve early identification and prevention, an overview of risk factors is needed. We therefore aimed to systematically summarise the nongenetic (exposome) risk factors for AOA and COPD. Additionally, we aimed to compare the risk factors for COPD and AOA. METHODS: In this umbrella review, we searched PubMed for articles from inception until 1 February 2023 and screened the references of relevant articles. We included systematic reviews and meta-analyses of observational epidemiological studies in humans that assessed a minimum of one lifestyle or environmental risk factor for AOA or COPD. RESULTS: In total, 75 reviews were included, of which 45 focused on risk factors for COPD, 28 on AOA and two examined both. For asthma, 43 different risk factors were identified while 45 were identified for COPD. For AOA, smoking, a high body mass index (BMI), wood dust exposure and residential chemical exposures, such as formaldehyde exposure or exposure to volatile organic compounds, were amongst the risk factors found. For COPD, smoking, ambient air pollution including nitrogen dioxide, a low BMI, indoor biomass burning, childhood asthma, occupational dust exposure and diet were amongst the risk factors found. CONCLUSIONS: Many different factors for COPD and asthma have been found, highlighting the differences and similarities. The results of this systematic review can be used to target and identify people at high risk for COPD or AOA

    Long COVID exhibits clinically distinct phenotypes at 3–6 months post-SARSCoV-2 infection: results from the P4O2 consortium

    Get PDF
    Background Four months after SARS-CoV-2 infection, 22%–50% of COVID-19 patients still experience complaints. Long COVID is a heterogeneous disease and finding subtypes could aid in optimising and developing treatment for the individual patient. Methods Data were collected from 95 patients in the P4O2 COVID-19 cohort at 3–6 months after infection. Unsupervised hierarchical clustering was performed on patient characteristics, characteristics from acute SARSCoV-2 infection, long COVID symptom data, lung function and questionnaires describing the impact and severity of long COVID. To assess robustness, partitioning around medoids was used as alternative clustering. Results Three distinct clusters of patients with long COVID were revealed. Cluster 1 (44%) represented predominantly female patients (93%) with pre-existing asthma and suffered from a median of four symptom categories, including fatigue and respiratory and neurological symptoms. They showed a milder SARS-CoV-2 infection. Cluster 2 (38%) consisted of predominantly male patients (83%) with cardiovascular disease (CVD) and suffered from a median of three symptom categories, most commonly respiratory and neurological symptoms. This cluster also showed a significantly lower forced expiratory volume within 1 s and diffusion capacity of the lung for carbon monoxide. Cluster 3 (18%) was predominantly male (88%) with pre-existing CVD and diabetes. This cluster showed the mildest long COVID, and suffered from symptoms in a median of one symptom category. Conclusions Long COVID patients can be clustered into three distinct phenotypes based on their clinical presentation and easily obtainable information. These clusters show distinction in patient characteristics, lung function, long COVID severity and acute SARS-CoV-2 infection severity. This clustering can help in selecting the most beneficial monitoring and/or treatment strategies for patients suffering from long COVID. Follow-up research is needed to reveal the underlying molecular mechanisms implicated in the different phenotypes and determine the efficacy of treatment

    Fatigue and symptom-based clusters in post COVID-19 patients: a multicentre, prospective, observational cohort study

    No full text
    Abstract Background In the Netherlands, the prevalence of post COVID-19 condition is estimated at 12.7% at 90–150 days after SARS-CoV-2 infection. This study aimed to determine the occurrence of fatigue and other symptoms, to assess how many patients meet the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) criteria, to identify symptom-based clusters within the P4O2 COVID-19 cohort and to compare these clusters with clusters in a ME/CFS cohort. Methods In this multicentre, prospective, observational cohort in the Netherlands, 95 post COVID-19 patients aged 40–65 years were included. Data collection at 3–6 months after infection included demographics, medical history, questionnaires, and a medical examination. Follow-up assessments occurred 9–12 months later, where the same data were collected. Fatigue was determined with the Fatigue Severity Scale (FSS), a score of ≥ 4 means moderate to high fatigue. The frequency and severity of other symptoms and the percentage of patients that meet the ME/CFS criteria were assessed using the DePaul Symptom Questionnaire-2 (DSQ-2). A self-organizing map was used to visualize the clustering of patients based on severity and frequency of 79 symptoms. In a previous study, 337 Dutch ME/CFS patients were clustered based on their symptom scores. The symptom scores of post COVID-19 patients were applied to these clusters to examine whether the same or different clusters were found. Results According to the FSS, fatigue was reported by 75.9% of the patients at 3–6 months after infection and by 57.1% of the patients 9–12 months later. Post-exertional malaise, sleep disturbances, pain, and neurocognitive symptoms were also frequently reported, according to the DSQ-2. Over half of the patients (52.7%) met the Fukuda criteria for ME/CFS, while fewer patients met other ME/CFS definitions. Clustering revealed specific symptom patterns and showed that post COVID-19 patients occurred in 11 of the clusters that have been observed in the ME/CFS cohort, where 2 clusters had > 10 patients. Conclusions This study shows persistent fatigue and diverse symptomatology in post COVID-19 patients, up to 12–18 months after SARS-CoV-2 infection. Clustering showed that post COVID-19 patients occurred in 11 of the clusters that have been observed in the ME/CFS cohort

    Precision medicine for more oxygen (P4O2): study design and first results of the Long COVID-19 extension

    Get PDF
    Introduction: The coronavirus disease 2019 (COVID-19) pandemic has led to the death of almost 7 million people, however, with a cumulative incidence of 0.76 billion, most people survive COVID-19. Several studies indicate that the acute phase of COVID-19 may be followed by persistent symptoms including fatigue, dyspnea, headache, musculoskeletal symptoms, and pulmonary functional-and radiological abnormalities. However, the impact of COVID-19 on long-term health outcomes remains to be elucidated. Aims: The Precision Medicine for more Oxygen (P4O2) consortium COVID-19 extension aims to identify long COVID patients that are at risk for developing chronic lung disease and furthermore, to identify treatable traits and innovative personalized therapeutic strategies for prevention and treatment. This study aims to describe the study design and first results of the P4O2 COVID-19 cohort. Methods: The P4O2 COVID-19 study is a prospective multicenter cohort study that includes nested personalized counseling intervention trial. Patients, aged 40-65 years, were recruited from outpatient post-COVID clinics from five hospitals in The Netherlands. During study visits at 3-6 and 12-18 months post-COVID-19, data from medical records, pulmonary function tests, chest computed tomography scans and biological samples were collected and questionnaires were administered. Furthermore, exposome data was collected at the patient's home and state-of-the-art imaging techniques as well as multi-omics analyses will be performed on collected data. Results: 95 long COVID patients were enrolled between May 2021 and September 2022. The current study showed persistence of clinical symptoms and signs of pulmonary function test/radiological abnormalities in post-COVID patients at 3-6 months post-COVID. The most commonly reported symptoms included respiratory symptoms (78.9%), neurological symptoms (68.4%) and fatigue (67.4%). Female sex and infection with the Delta, compared with the Beta, SARS-CoV-2 variant were significantly associated with more persisting symptom categories. Conclusions: The P4O2 COVID-19 study contributes to our understanding of the long-term health impacts of COVID-19. Furthermore, P4O2 COVID-19 can lead to the identification of different phenotypes of long COVID patients, for example those that are at risk for developing chronic lung disease. Understanding the mechanisms behind the different phenotypes and identifying these patients at an early stage can help to develop and optimize prevention and treatment strategies.Pathogenesis and treatment of chronic pulmonary disease
    corecore