1,118 research outputs found
Applying quantitative semantics to higher-order quantum computing
Finding a denotational semantics for higher order quantum computation is a
long-standing problem in the semantics of quantum programming languages. Most
past approaches to this problem fell short in one way or another, either
limiting the language to an unusably small finitary fragment, or giving up
important features of quantum physics such as entanglement. In this paper, we
propose a denotational semantics for a quantum lambda calculus with recursion
and an infinite data type, using constructions from quantitative semantics of
linear logic
On the completeness of quantum computation models
The notion of computability is stable (i.e. independent of the choice of an
indexing) over infinite-dimensional vector spaces provided they have a finite
"tensorial dimension". Such vector spaces with a finite tensorial dimension
permit to define an absolute notion of completeness for quantum computation
models and give a precise meaning to the Church-Turing thesis in the framework
of quantum theory. (Extra keywords: quantum programming languages, denotational
semantics, universality.)Comment: 15 pages, LaTe
A Graphical Language for Proof Strategies
Complex automated proof strategies are often difficult to extract, visualise,
modify, and debug. Traditional tactic languages, often based on stack-based
goal propagation, make it easy to write proofs that obscure the flow of goals
between tactics and are fragile to minor changes in input, proof structure or
changes to tactics themselves. Here, we address this by introducing a graphical
language called PSGraph for writing proof strategies. Strategies are
constructed visually by "wiring together" collections of tactics and evaluated
by propagating goal nodes through the diagram via graph rewriting. Tactic nodes
can have many output wires, and use a filtering procedure based on goal-types
(predicates describing the features of a goal) to decide where best to send
newly-generated sub-goals.
In addition to making the flow of goal information explicit, the graphical
language can fulfil the role of many tacticals using visual idioms like
branching, merging, and feedback loops. We argue that this language enables
development of more robust proof strategies and provide several examples, along
with a prototype implementation in Isabelle
Distributional Sentence Entailment Using Density Matrices
Categorical compositional distributional model of Coecke et al. (2010)
suggests a way to combine grammatical composition of the formal, type logical
models with the corpus based, empirical word representations of distributional
semantics. This paper contributes to the project by expanding the model to also
capture entailment relations. This is achieved by extending the representations
of words from points in meaning space to density operators, which are
probability distributions on the subspaces of the space. A symmetric measure of
similarity and an asymmetric measure of entailment is defined, where lexical
entailment is measured using von Neumann entropy, the quantum variant of
Kullback-Leibler divergence. Lexical entailment, combined with the composition
map on word representations, provides a method to obtain entailment relations
on the level of sentences. Truth theoretic and corpus-based examples are
provided.Comment: 11 page
The Measurement Calculus
Measurement-based quantum computation has emerged from the physics community
as a new approach to quantum computation where the notion of measurement is the
main driving force of computation. This is in contrast with the more
traditional circuit model which is based on unitary operations. Among
measurement-based quantum computation methods, the recently introduced one-way
quantum computer stands out as fundamental.
We develop a rigorous mathematical model underlying the one-way quantum
computer and present a concrete syntax and operational semantics for programs,
which we call patterns, and an algebra of these patterns derived from a
denotational semantics. More importantly, we present a calculus for reasoning
locally and compositionally about these patterns.
We present a rewrite theory and prove a general standardization theorem which
allows all patterns to be put in a semantically equivalent standard form.
Standardization has far-reaching consequences: a new physical architecture
based on performing all the entanglement in the beginning, parallelization by
exposing the dependency structure of measurements and expressiveness theorems.
Furthermore we formalize several other measurement-based models:
Teleportation, Phase and Pauli models and present compositional embeddings of
them into and from the one-way model. This allows us to transfer all the theory
we develop for the one-way model to these models. This shows that the framework
we have developed has a general impact on measurement-based computation and is
not just particular to the one-way quantum computer.Comment: 46 pages, 2 figures, Replacement of quant-ph/0412135v1, the new
version also include formalization of several other measurement-based models:
Teleportation, Phase and Pauli models and present compositional embeddings of
them into and from the one-way model. To appear in Journal of AC
Theory of Chiral Order in Random Copolymers
Recent experiments have found that polyisocyanates composed of a mixture of
opposite enantiomers follow a chiral ``majority rule:'' the chiral order of the
copolymer, measured by optical activity, is dominated by whichever enantiomer
is in the majority. We explain this majority rule theoretically by mapping the
random copolymer onto the random-field Ising model. Using this model, we
predict the chiral order as a function of enantiomer concentration, in
quantitative agreement with the experiments, and show how the sharpness of the
majority-rule curve can be controlled.Comment: 13 pages, including 4 postscript figures, uses REVTeX 3.0 and
epsf.st
Environment and classical channels in categorical quantum mechanics
We present a both simple and comprehensive graphical calculus for quantum
computing. In particular, we axiomatize the notion of an environment, which
together with the earlier introduced axiomatic notion of classical structure
enables us to define classical channels, quantum measurements and classical
control. If we moreover adjoin the earlier introduced axiomatic notion of
complementarity, we obtain sufficient structural power for constructive
representation and correctness derivation of typical quantum informatic
protocols.Comment: 26 pages, many pics; this third version has substantially more
explanations than previous ones; Journal reference is of short 14 page
version; Proceedings of the 19th EACSL Annual Conference on Computer Science
Logic (CSL), Lecture Notes in Computer Science 6247, Springer-Verlag (2010
Order and Frustration in Chiral Liquid Crystals
This paper reviews the complex ordered structures induced by chirality in
liquid crystals. In general, chirality favors a twist in the orientation of
liquid-crystal molecules. In some cases, as in the cholesteric phase, this
favored twist can be achieved without any defects. More often, the favored
twist competes with applied electric or magnetic fields or with geometric
constraints, leading to frustration. In response to this frustration, the
system develops ordered structures with periodic arrays of defects. The
simplest example of such a structure is the lattice of domains and domain walls
in a cholesteric phase under a magnetic field. More complex examples include
defect structures formed in two-dimensional films of chiral liquid crystals.
The same considerations of chirality and defects apply to three-dimensional
structures, such as the twist-grain-boundary and moire phases.Comment: 39 pages, RevTeX, 14 included eps figure
A lambda calculus for quantum computation with classical control
The objective of this paper is to develop a functional programming language
for quantum computers. We develop a lambda calculus for the classical control
model, following the first author's work on quantum flow-charts. We define a
call-by-value operational semantics, and we give a type system using affine
intuitionistic linear logic. The main results of this paper are the safety
properties of the language and the development of a type inference algorithm.Comment: 15 pages, submitted to TLCA'05. Note: this is basically the work done
during the first author master, his thesis can be found on his webpage.
Modifications: almost everything reformulated; recursion removed since the
way it was stated didn't satisfy lemma 11; type inference algorithm added;
example of an implementation of quantum teleportation adde
- …