2,490 research outputs found

    Laser Microirradiation of Chinese Hamster Cells at Wavelength 365 nm

    Get PDF
    Cells of a V79 subline of the Chinese hamster were microirradiated at wavelength 365 nm in the presence of the psoralen derivative, trioxsalen. Microirradiation was accomplished by a pulsed argon laser microbeam either in anaphase or in interphase 3 hr after mitosis. Inhibition of clonal growth and formation of micronuclei at the first postirradiation mitosis were observed after microirradiation of anaphase chromosomes and of small parts of the interphase nucleus. Microirradiation of the cytoplasm beside the interphase nucleus or between the sets of chromosomes moving apart from each other in anaphase did not produce these effects. Anaphase experiments showed that only the daughter cell which received microirradiated chromatin exhibited an abnormal growth pattern. Most interestingly, shattering of the whole chromosome complement could be induced by microirradiation of small parts of the interphase nucleus and post-treatment with caffeine. Since microirradiation of chromatin in the absence of psoralen was not effective, we consider formation of psoralen photoadducts to nucleic acids in microirradiated chromatin to be the specific cause of the effects. We suggest that DNA photolesions in chromosome segments present in the microirradiated part of the nucleus can induce shattering of all the chromosomes in the microirradiated nucleus. Several possibilities are discussed to explain this unexpected finding

    Quantum Hall Phase Diagram of Second Landau-level Half-filled Bilayers: Abelian versus Non-Abelian States

    Full text link
    The quantum Hall phase diagram of the half-filled bilayer system in the second Landau level is studied as a function of tunneling and layer separation using exact diagonalization. We make the striking prediction that bilayer structures would manifest two distinct branches of incompressible fractional quantum Hall effect (FQHE) corresponding to the Abelian 331 state (at moderate to low tunneling and large layer separation) and the non-Abelian Pfaffian state (at large tunneling and small layer separation). The observation of these two FQHE branches and the quantum phase transition between them will be compelling evidence supporting the existence of the non-Abelian Pfaffian state in the second Landau level.Comment: 4 pages, 3 figure

    The Kelvin Formula for Thermopower

    Get PDF
    Thermoelectrics are important in physics, engineering, and material science due to their useful applications and inherent theoretical difficulty, especially in strongly correlated materials. Here we reexamine the framework for calculating the thermopower, inspired by ideas of Lord Kelvin from 1854. We find an approximate but concise expression, which we term as the Kelvin formula for the the Seebeck coefficient. According to this formula, the Seebeck coefficient is given as the particle number NN derivative of the entropy Σ\Sigma, at constant volume VV and temperature TT, SKelvin=1qe{ΣN}V,TS_{\text{Kelvin}}=\frac{1}{q_e}\{\frac{\partial {\Sigma}}{\partial N} \}_{V,T}. This formula is shown to be competitive compared to other approximations in various contexts including strongly correlated systems. We finally connect to a recent thermopower calculation for non-Abelian fractional quantum Hall states, where we point out that the Kelvin formula is exact.Comment: 6 pages, 2 figure

    Finite temperature properties of the triangular lattice t-J model, applications to Nax_xCoO2_2

    Full text link
    We present a finite temperature (TT) study of the t-J model on the two-dimensional triangular lattice for the negative hopping tt, as relevant for the electron-doped Nax_xCoO2_2 (NCO). To understand several aspects of this system, we study the TT-dependent chemical potential, specific heat, magnetic susceptibility, and the dynamic Hall-coefficient across the entire doping range. We show systematically, how this simplest model for strongly correlated electrons describes a crossover as function of doping (xx) from a Pauli-like weakly spin-correlated metal close to the band-limit (density n=2n=2) to the Curie-Weiss metallic phase (1.5<n<1.751.5<n<1.75) with pronounced anti-ferromagnetic (AFM) correlations at low temperatures and Curie-Weiss type behavior in the high-temperature regime. Upon further reduction of the doping, a new energy scale, dominated by spin-interactions (JJ) emerges (apparent both in specific heat and susceptibility) and we identify an effective interaction Jeff(x)J_{eff}(x), valid across the entire doping range. This is distinct from Anderson's formula, as we choose here t<0t<0, hence the opposite sign of the usual Nagaoka-ferromagnetic situation. This expression includes the subtle effect of weak kinetic AFM - as encountered in the infinitely correlated situation (U=U=\infty). By explicit computation of the Kubo-formulae, we address the question of practical relevance of the high-frequency expression for the Hall coefficient RHR_H^*. We hope to clarify some open questions concerning the applicability of the t-J model to real experimental situations through this study

    Assessing the Risk of 100-year Freshwater Floods in the Lamprey River Watershed of New Hampshire Resulting from Changes in Climate and Land Use

    Get PDF
    What is the coastal resource issue the project sought to address? Both the magnitude and frequency of freshwater flooding is on the rise in seacoast NH and around much of New England. In the Great Bay watershed, this is the result of two primary causes: 1) increases in impervious surface stemming from a three-to-four fold increase in developed land since 1962; and 2) changing rainfall patterns in part exemplified by a doubling in the frequency of extreme weather events that drop more than 4 inches of precipitation in less than 48 hours (Wake et al., 2011) over the same time period. Moreover, the size of the 100-year precipitation event in this region has increased 26% from 6.3 inches to 8.5 inches from the mid 1950’s to 2010 (NRCC and NRCS, 2012). One consequence is the occurrence of three 100-year floods measured on the Lamprey River at Packers Falls since 1987, and a fourth if the three days of flooding in March of 2010 had occurred instead in two days (Figure 1). Flooding events are expected to continue to increase in magnitude and frequency as land in the watershed is further developed and climate continues to change in response to anthropogenic forcing (e.g., Hayhoe et el., 2007; IPCC, 2007; Karl et al., 2009). Land use management strategies, in particular low impact development (LID) zoning requirements, are one strategy that communities can employ for increased resiliency to flooding with the greatest influence in urban environments

    William (Bill) Peterson's contributions to ocean science, management, and policy

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schwing, F. B., Sissenwine, M. J., Batchelder, H., Dam, H. G., Gomez-Gutierrez, J., Keister, J. E., Liu, H., & Peterson, J. O. William (Bill) Peterson's contributions to ocean science, management, and policy. Progress in Oceanography, 182, (2020): 102241, doi:10.1016/j.pocean.2019.102241.In addition to being an esteemed marine ecologist and oceanographer, William T. (Bill) Peterson was a dedicated public servant, a leader in the ocean science community, and a mentor to a generation of scientists. Bill recognized the importance of applied science and the need for integrated “big science” programs to advance our understanding of ecosystems and to guide their management. As the first US GLOBEC program manager, he was pivotal in transitioning the concept of understanding how climate change impacts marine ecosystems to an operational national research program. The scientific insight and knowledge generated by US GLOBEC informed and advanced the ecosystem-based management approaches now being implemented for fishery management in the US. Bill held significant leadership roles in numerous international efforts to understand global and regional ecological processes, and organized and chaired a number of influential scientific conferences and their proceedings. He was passionate about working with and training young researchers. Bill’s academic affiliations, notably at Stony Brook and Oregon State Universities, enabled him to advise, train, and mentor a host of students, post-doctoral researchers, and laboratory technicians. Under his collegial guidance they became critical independent thinkers and diligent investigators. His former students and colleagues carry on Bill Peterson’s legacy of research that helps us understand marine ecosystems and informs more effective resource stewardship and conservation

    Prefrontal Neurons Coding Suppression of Specific Saccades

    Get PDF
    AbstractThe prefrontal cortex has been implicated in the suppression of unwanted behavior, based upon observations of humans and monkeys with prefrontal lesions. Despite this, there has been little direct neurophysiological evidence for a mechanism that suppresses specific behavior. In this study, we used an oculomotor delayed match/nonmatch-to-sample task in which monkeys had to remember a stimulus location either as a marker of where to look or as a marker of where not to look. We found a group of neurons in both the frontal eye field and the caudal prefrontal cortex that carried signals selective for the forbidden stimulus. The activity of these “don't look” neurons correlated with the monkeys' success or failure on the task. These results demonstrate a frontal signal that is related to the active suppression of one action while the subject performs another

    Assessing the Risk of 100-year Freshwater Floods in the Lamprey River Watershed of New Hampshire Resulting from Changes in Climate and Land Use

    Get PDF
    What is the coastal resource issue the project sought to address? Both the magnitude and frequency of freshwater flooding is on the rise in seacoast NH and around much of New England. In the Great Bay watershed, this is the result of two primary causes: 1) increases in impervious surface stemming from a three-to-four fold increase in developed land since 1962; and 2) changing rainfall patterns in part exemplified by a doubling in the frequency of extreme weather events that drop more than 4 inches of precipitation in less than 48 hours (Wake et al., 2011) over the same time period. Moreover, the size of the 100-year precipitation event in this region has increased 26% from 6.3 inches to 8.5 inches from the mid 1950’s to 2010 (NRCC and NRCS, 2012). One consequence is the occurrence of three 100-year floods measured on the Lamprey River at Packers Falls since 1987, and a fourth if the three days of flooding in March of 2010 had occurred instead in two days (Figure 1). Flooding events are expected to continue to increase in magnitude and frequency as land in the watershed is further developed and climate continues to change in response to anthropogenic forcing (e.g., Hayhoe et el., 2007; IPCC, 2007; Karl et al., 2009). Land use management strategies, in particular low impact development (LID) zoning requirements, are one strategy that communities can employ for increased resiliency to flooding with the greatest influence in urban environments
    corecore