395 research outputs found

    Relativistic Einstein-Podolsky-Rosen correlation and Bell's inequality

    Get PDF
    We formulate the Einstein-Podolsky-Rosen (EPR) gedankenexperiment within the framework of relativistic quantum theory to analyze a situation in which measurements are performed by moving observers. We point out that under certain conditions the perfect anti-correlation of an EPR pair of spins in the same direction is deteriorated in the moving observers' frame due to the Wigner rotation, and show that the degree of the violation of Bell's inequality prima facie decreases with increasing the velocity of the observers if the directions of the measurement are fixed. However, this does not imply a breakdown of non-local correlation since the perfect anti-correlation is maintained in appropriately chosen different directions. We must take account of this relativistic effect in utilizing in moving frames the EPR correlation and the violation of Bell's inequality for quantum communication.Comment: 33 pages, 6 figure

    Bose-Einstein droplet in free space

    Get PDF
    We show that a droplet of a Bose-Einstein condensate can be dynamically stabilized in free space by rapid oscillations of interatomic interactions between attractive and repulsive through, e.g., the Feshbach resonance. Energy dissipation, which is present in realistic situations, is found to play a crucial role to suppress dynamical instabilities inherent in nonlinear nonequilibrium systems.Comment: 5 pages, 5 figure

    Ferromagnetic fluctuation and possible triplet superconductivity in Na_xCoO_2*yH_2O: Fluctuation-exchange study of multi-orbital Hubbard model

    Full text link
    Spin and charge fluctuations and superconductivity in a recently discovered superconductor Na_xCoO_2*yH_2O are studied based on a multi-orbital Hubbard model. Tight-binding parameters are determined to reproduce the LDA band dispersions with the Fermi surface, which consist of a large cylindrical one around the Gamma-point and six hole pockets near the K-points. By applying the fluctuation-exchange (FLEX) approximation, we show that the Hund's-rule coupling between the Co t2g orbitals causes ferromagnetic (FM) spin fluctuation. Triplet f_{y(y^2-3x^2)}-wave and p-wave pairings are favored by this FM fluctuation on the hole-pocket band. We propose that, in Na_xCoO_2*yH_2O, the Co t2g orbitals and inter-orbital Hund's-rule coupling play important roles on the triplet pairing, and this compound can be a first example of the triplet superconductor in which the orbital degrees of freedom play substantial roles.Comment: 5 pages, 3 figure

    Multi-copy and stochastic transformation of multipartite pure states

    Full text link
    Characterizing the transformation and classification of multipartite entangled states is a basic problem in quantum information. We study the problem under two most common environments, local operations and classical communications (LOCC), stochastic LOCC and two more general environments, multi-copy LOCC (MCLOCC) and multi-copy SLOCC (MCSLOCC). We show that two transformable multipartite states under LOCC or SLOCC are also transformable under MCLOCC and MCSLOCC. What's more, these two environments are equivalent in the sense that two transformable states under MCLOCC are also transformable under MCSLOCC, and vice versa. Based on these environments we classify the multipartite pure states into a few inequivalent sets and orbits, between which we build the partial order to decide their transformation. In particular, we investigate the structure of SLOCC-equivalent states in terms of tensor rank, which is known as the generalized Schmidt rank. Given the tensor rank, we show that GHZ states can be used to generate all states with a smaller or equivalent tensor rank under SLOCC, and all reduced separable states with a cardinality smaller or equivalent than the tensor rank under LOCC. Using these concepts, we extended the concept of "maximally entangled state" in the multi-partite system.Comment: 8 pages, 1 figure, revised version according to colleagues' comment

    Criteria of off-diagonal long-range order in Bose and Fermi systems based on the Lee-Yang cluster expansion method

    Full text link
    The quantum-statistical cluster expansion method of Lee and Yang is extended to investigate off-diagonal long-range order (ODLRO) in one- and multi-component mixtures of bosons or fermions. Our formulation is applicable to both a uniform system and a trapped system without local-density approximation and allows systematic expansions of one- and multi-particle reduced density matrices in terms of cluster functions which are defined for the same system with Boltzmann statistics. Each term in this expansion can be associated with a Lee-Yang graph. We elucidate a physical meaning of each Lee-Yang graph; in particular, for a mixture of ultracold atoms and bound dimers, an infinite sum of the ladder-type Lee-Yang 0-graphs is shown to lead to Bose-Einstein condensation of dimers below the critical temperature. In the case of Bose statistics, an infinite series of Lee-Yang 1-graphs is shown to converge and gives the criteria of ODLRO at the one-particle level. Applications to a dilute Bose system of hard spheres are also made. In the case of Fermi statistics, an infinite series of Lee-Yang 2-graphs is shown to converge and gives the criteria of ODLRO at the two-particle level. Applications to a two-component Fermi gas in the tightly bound limit are also made.Comment: 21 pages, 10 figure

    Symmetry Breaking and Enhanced Condensate Fraction in a Matter-Wave Bright Soliton

    Full text link
    An exact diagonalization study reveals that a matter-wave bright soliton and the Goldstone mode are simultaneously created in a quasi-one-dimensional attractive Bose-Einstein condensate by superpositions of quasi-degenerate low-lying many-body states. Upon formation of the soliton the maximum eigenvalue of the single-particle density matrix increases dramatically, indicating that a fragmented condensate converts into a single condensate as a consequence of the breaking of translation symmetry.Comment: 4 pages, 4 figures, revised versio

    Bloch Structures in a Rotating Bose-Einstein Condensate

    Full text link
    A rotating Bose-Einstein condensate is shown to exhibit a Bloch band structure without the need of periodic potential. Vortices enter the condensate by a mechanism similar to the Bragg reflection, if the frequency of a rotating drive or the strength of interaction is adiabatically changed. A localized state analogous to a gap soliton in a periodic system is predicted near the edge of the Brillouin zone.Comment: 4 pages, 3 figure
    corecore