148 research outputs found
Polyethylene Glycol as Additive to Achieve N-Conductive Melt-Mixed Polymer/Carbon Nanotube Composites for Thermoelectric Application
The development of thermoelectric (TE) materials based on thermoplastic polymers and carbon nanotubes is a focus of current TE research activities. For a TE module, both p- and n-conductive composites are required, whereby the production of n-conductive materials is a particular challenge. The present study investigates whether adding polyethylene glycol (PEG) as n-dopant during the melt-mixing of the conductive composites based on polycarbonate, poly(ether ether ketone), or poly(butylene terephthalate) with singlewalled carbon nanotubes (0.5 to 2 wt%) is a possible solution. It was shown that for all three polymer types, a change in the sign of the Seebeck coefficient from positive to negative could be achieved when at least 1.5 wt% PEG was added. The most negative Seebeck coefficients were determined to be −30.1 µV/K (PC), −44.1 µV/K (PEEK), and −14.5 µV/K (PBT). The maximal power factors ranged between 0.0078 µW/m·K2 (PC), 0.035 µW/m·K2 (PEEK), and 0.0051 µW/m·K2 (PBT)
Recommended from our members
Polymer - Carbon nanotube composites for thermoelectric applications
The thermoelectric (TE) performance of electrically conductive thermoplastic composites prepared by melt mixing was investigated. A cost effective widely used in industry polymer, namely polypropylene (PP), was chosen as the matrix to fabricate the composites. Singlewalled carbon nanotubes (SWCNTs), the amount (2 wt%) of which was selected to be above the electrical percolation threshold (< 0.2 wt%), were used to form an electrical conducting network. Besides as-produced SWCNTs plasma modified tubes were employed to study the influence of the functionalization on the morphology, dispersion and TE properties of the PP composites. In addition, melt processing conditions, e.g. temperature, rotation speed, and time during mixing in a small-scale compounder were varied. Furthermore, an ionic liquid (IL, 1-methyl-3-octylimidazolium tetrafluoroborate) was used as a processing additive during melt mixing, which was confirmed to improve the electrical conductivity of the composites. Simultaneous increase in the Seebeck coefficient up to a value of 64 μV/K was recorded, leading to a much better power factor of 0.26 μW/(m·K2) compared to composites without IL. This melt mixing strategy opens new avenues for solvent-free, large scale fabrication of polymer based TE materials
Improvement of electrical resistivity of highly filled graphite/pp composite based bipolar plates for fuel cells by addition of carbon black
Novel material solutions for polymer based bipolar plates in fuel cells require adapted ways to develop suitable material compositions. The common pathway to develop materials with at the same time high electrical as well as thermal conductivity is the use of conductive graphite as filler with contents up to 80-85 wt.%. However, there is a need to develop recipes with maximized conductive behavior at lowest possible content of conductive filler to enhance the mechanical properties and allow good processability. In this study, composites based on polypropylene (PP) and different filler systems were melt-mixed using a lab scale co-rotating twin-screw extruder and compression molded to bipolar type plates. As fillers synthetic (G) or expanded (EG) graphites were incorporated. At the overall filler content of 60 wt.% or 80 wt% part of the graphite was replaced by highly conductive carbon black (CB, 2.5 wt.%, 5.0 wt.%). It was found that the addition of CB significantly reduced the electrical volume as well as the surface resistivity up to values of 0.12 Ωcm or 4 mΩ/square, respectively. For the values of thermal conductivity the kind and particle size of the selected graphite was important. If expanded graphite was partially replaced by CB, the thermal conductivity of PP/EG+CB composites decreased significantly. Otherwise, the combination of synthetic graphite and CB changed the thermal conductivity of PP composites only marginal at the same overall filler content. For both graphite types the filler with larger particle size resulted in higher thermal conductivity
Recommended from our members
Blend Structure and n-Type Thermoelectric Performance of PA6/SAN and PA6/PMMA Blends Filled with Singlewalled Carbon Nanotubes
The present study investigates how the formation of melt-mixed immiscible blends based on PA6/SAN and PA6/PMMA filled with single walled nanotubes (SWCNTs) affects the thermoelectric (TE) properties. In addition to the detailed investigation of the blend morphology with compositions between 100/0 wt.% and 50/50 wt.%, the thermoelectric properties are investigated on blends with different SWCNT concentrations (0.25–3.0 wt.%). Both PA6 and the blend composites with the used type of SWCNTs showed negative Seebeck coefficients. It was shown that the PA6 matrix polymer, in which the SWCNTs are localized, mainly influenced the thermoelectric properties of blends with high SWCNT contents. By varying the blend composition, an increase in the absolute Seebeck coefficient, power factor (PF), and figure of merit (ZT) was achieved compared to the PA6 composite which is mainly related to the selective localization and enrichment of SWCNTs in the PA6 matrix at constant SWCNT loading. The maximum PFs achieved were 0.22 µW/m·K2 for PA6/SAN/SWCNT 70/30/3 wt.% and 0.13 µW/m·K2 for PA6/PMMA/SWCNT 60/40/3 wt.% compared to 0.09 µW/m·K2 for PA6/3 wt.% SWCNT which represent increases to 244% and 144%, respectively. At higher PMMA or SAN concentration, the change from matrix-droplet to a co-continuous morphology started, which, despite higher SWCNT enrichment in the PA6 matrix, disturbed the electrical conductivity, resulting in reduced PFs with still increasing Seebeck coefficients. At SWCNT contents between 0.5 and 3 wt.% the increase in the absolute Seebeck coefficient was compensated by lower electrical conductivity resulting in lower PF and ZT as compared to the PA6 composites
Recommended from our members
Thermal conductivity and electrical resistivity of melt-mixed polypropylene composites containing mixtures of carbon-based fillers
Melt-mixed composites based on polypropylene (PP) with various carbon-based fillers were investigated with regard to their thermal conductivity and electrical resistivity. The composites were filled with up to three fillers by selecting combinations of graphite nanoplatelets (GNP), carbon fibers (CF), carbon nanotubes (CNT), carbon black (CB), and graphite (G) at a constant filler content of 7.5 vol%. The thermal conductivity of PP (0.26 W/(m·K)) improved most using graphite nanoplatelets, whereas electrical resistivity was the lowest when using multiwalled CNT. Synergistic effects could be observed for different filler combinations. The PP composite, which contains a mixture of GNP, CNT, and highly structured CB, simultaneously had high thermal conductivity (0.5 W/(m·K)) and the lowest electrical volume resistivity (4 Ohm·cm)
Recommended from our members
The influence of the blend ratio in PA6/PA66/MWCNT blend composites on the electrical and thermal properties
It is known that the percolation threshold of polyamide 6 (PA6)/multiwalled carbon nanotube (MWCNT) composites is higher than that of PA66/MWCNT composites under the same mixing conditions and melt viscosity. A series of blends of PA6 and PA66 containing 1 wt % MWCNTs have been prepared to investigate this phenomenon. At contents up to 20 wt % PA66, the blends were not electrically conductive. The electrical resistivity dropped to 109 Ohm∙cm for PA66/PA6 30/70 blends. The resistivity was 105 Ohm∙cm at higher PA66 contents. Differential scanning calorimetry was used to investigate the thermal behavior of blends. The glass transition temperature was almost constant for all blend compositions, indicating that the amorphous phases are miscible. The MWCNT addition influenced the crystallization of PA66 much more than the PA6 crystallization. A heterogeneous crystallization of the polyamide in PA66/PA6 blends took place, and the MWCNTs were mainly localized in the earlier crystallizing PA66 phase. Thus, the formation of the nanotube network and thus the electrical volume resistivity of the PA6/PA66 blends with 1 wt % MWCNTs is significantly influenced by the crystallization behavior. In PA66/PA6 blends up to 60 wt %, the more expensive PA66 can be replaced by the cheaper PA6 while retaining its electrical propertie
Recommended from our members
Melt mixed PCL/MWCNT composites prepared at different rotation speeds: Characterization of rheological, thermal, and electrical properties, molecular weight, MWCNT macrodispersion, and MWCNT length distribution
Composites of poly(caprolactone) (PCL) and 0.5 wt.% multiwalled carbon nanotubes (MWCNT) were prepared by melt-mixing in a conical twin-screw micro-compounder by varying the rotation speed between 25 and 400 rpm at constant mixing time and temperature. The state of dispersion analyzed by light microscopy was improved with increasing rotation speed but levels off starting at about 100 rpm. PCL molecular weight as well as crystallization and melting behavior did show only insignificant difference when varying the rotation speed. Concerning melt rheological properties, storage modulus G′ and complex viscosity η* at 0.1 rad/s increased up to a rotation speed of about 75 rpm illustrating improved dispersion. When further increasing the speed G′ and η* decreased which was attributed to more pronounced nanotube shortening as quantified by TEM measurements. Both effects - improved dispersion and nanotube shortening - are also reflected in the electrical resistivity values of compression molded samples which show a minimum of resistivity at the rotation speed of 75 rpm corresponding to a specific mechanical energy input of 0.47 kWh/kg. © 2013 Elsevier Ltd. All rights reserved
Recommended from our members
A successful approach to disperse MWCNTs in polyethylene by melt mixing using polyethylene glycol as additive
An additive-assisted one-step melt mixing approach was developed to produce nanocomposites based on linear low density polyethylene (LLDPE) with multiwalled carbon nanotube (MWCNT). The polymer granules, nanotube powder (2 wt% Nanocyl™ NC7000) and 1-10 wt% of the non-ionic additives poly(ethylene glycol) (PEG) or poly(ethylene oxide) (PEO) with molar masses between 100 g/mol and 100,000 g/mol were simply fed together in the hopper of a small-scale DSM Xplore 15 twin-screw microcompounder. The produced MWCNT/LLDPE composites showed excellent MWCNT dispersion and highly improved electrical properties as compared to samples without the additive, whereas the effects depend on the amount and molar mass of the additive. When 7 wt% PEG (2000 g/mol) were used, a reduction of the electrical percolation threshold from 2.5 wt% to 1.5 wt% was achieved. © 2012 Elsevier Ltd. All rights reserved
Recommended from our members
Organic vapor sensing behavior of polycarbonate/polystyrene/multi-walled carbon nanotube blend composites with different microstructures
With the focus on the use as leakage detectors, the vapor sensing behavior of conductive polymer composites (CPCs) based on polycarbonate/polystyrene/multi-walled carbon nanotube (PC/PS/MWCNT) blends with different blend ratios was studied as well as their morphological and electrical properties. In the melt mixed blend composites, the MWCNTs are preferentially localized in PC. At the PC/PS ratio of 70/30 wt%, the composites showed a sea-island structure, while for blends containing 40 wt% or 50 wt% PS co-continuous structures were developed resulting in a reduction in the MWCNT percolation threshold. The saturated vapors of the selected solvents have good interactions to PS but different interactions to PC. At 0.75 wt% MWCNT, sea-island CPCs showed high relative resistance change (Rrel) but poor reversibility towards moderate vapors like ethyl acetate and toluene, while CPCs with co-continuous structure exhibited lower Rrel and better reversibility. All CPCs showed poor reversibility towards vapor of the good solvent dichloromethane due to strong interactions between polymers and vapor. In the vapor of the poor solvent cyclohexane, CPCs with higher PS content showed increased Rrel. After extraction of the PS component by cyclohexane, the sensing response was decreased and the Rrel of the co-continuous blend even reached negative values
Recommended from our members
Ultralow percolation threshold in polyamide 6.6/MWCNT composites
When incorporating multiwalled carbon nanotubes (MWCNTs) synthesised by the aerosol-CVD method using different solvents into polyamide 6.6 (PA66) by melt mixing an ultralow electrical percolation threshold of 0.04. wt.% was found. This very low threshold was assigned to the specific characteristic of the MWCNTs for which a very high aspect ratio, a good dispersability in aqueous surfactant dispersions, and relatively low oxygen content near the surface were measured. The investigation of the composites by transmission electron microscopy on ultrathin cuts as well as by scanning electron microscopy combined with charge contrast imaging on compression moulded plates illustrated a good MWCNT dispersion within the PA66 matrix and that the very high aspect ratio of the nanotubes remained even after melt processing. Additionally, the thermal behaviour of the PA66 composites was investigated using differential scanning calorimetry (DSC) showing that the addition of only 0.05. wt.% MWCNT leads to an increase of the onset crystallization temperature of 11. K
- …