670 research outputs found

    Climate change and temperature dependent biogeography: oxygen limitation of thermal tolerance in animals

    Get PDF
    Recent years have shown a rise in mean global temperatures and a shift in the geographical distribution of ectothermic animals. For a cause and effect analysis the present paper discusses those physiological processes limiting thermal tolerance. The lower heat tolerance in metazoa compared to unicellular eukaryotes and bacteria suggests that a complex systemic rather than molecular process is limiting in metazoa.Whole animal aerobic scope appears as the first process limited at low and high temperatures linked to the progressively insufficient capacity of circulation and ventilation. Oxygen levels in body fluids may decrease reflecting excessive oxygen demand at high or insufficient aerobic capacity of mitochondria at low temperatures. Aerobic scope falls at temperatures beyond the thermal optimum and vanishes at low or high critical temperatures when transition to an anaerobic mitochondrial metabolism occurs. The adjustment of mitochondrial densities on top of parallel molecular or membrane adjustments appears crucial to maintain aerobic scope and to shift thermal tolerance.In conclusion, the capacity of oxygen delivery matches full aerobic scope only within the thermal optimum. At temperatures beyond only time limited survival is supported by residual aerobic scope, then anaerobic metabolism and finally molecular protection by heat shock proteins and antioxidative defence. In a cause and effect hierarchy the progressive increase in oxygen limitation at extreme temperatures may even enhance oxidative and denaturation stress. As a corollary, capacity limitations at a complex level of organisation, the oxygen delivery system, define thermal tolerance limits before molecular functions become disturbed

    Simultaneous observations of haemolymph flow and ventilation in marine spider crabs at different temperatures: a flow weighted MRI study

    Get PDF
    In vivo magnetic resonance imaging (MRI) and angiography were applied to the marine spider crab Maja squinado for a study of temperature effects and thermal tolerance. Ventilation and haemolymph circulation were investigated during progressive cooling from 12°C to 2°C. The anatomical resolution of MR images from Maja squinado obtained with a standard spin echo sequence were suitable to resolve the structures of various internal organs. The heart of the animal could be depicted without movement artifacts. The use of a flow compensated gradient echo sequence allowed simultaneous observations of ventilation, reflected by water flow through the gill chambers as well as of haemolymph flow. Simultaneous investigation of various arteries was possible by use of flow weighted MRI. In addition to those accessible by standard invasive flow sensitive doppler sensors, flow changes in gill, leg arteries and the venous return could be observed. Both ventilation and haemolymph flow decreased during progressive cooling and changes in haemolymph flow varied between arteries. Haemolymph flow through the Arteria sternalis, some gill and leg arteries was maintained at low temperatures indicating a reduced thermal sensitivity of flow in selected vessels. In support of previous invasive studies of haemolymph flow as well as heart and ventilation rates, the results demonstrate that the operation of gills and the maintenance of locomotor activity are critical for cold tolerance. A shift in haemolymph flow between arteries likely occurs to ensure the functioning of locomotion and ventilation in the cold

    El papel de los océanos en el contexto de un clima cambiante

    Get PDF

    Physiological capacity of Cancer setosus larvae — Adaptation to El Niño Southern Oscillation conditions

    Get PDF
    Temperature changes during ENSO challenge the fauna of the Pacific South American coast. In many ectotherm benthic species pelagic larvae are the most important dispersal stage, which may, however, be particularly vulnerable to such environmental stress. Thermal limitation in aquatic ecotherms is hypothesized to be reflected first in the aerobic scope of an animal. Here we present results on whole animal oxygen consumption and on the activities of two metabolic key enzymes, citrate synthase (CS) and pyruvate kinase (PK)) of Cancer setosus zoeal larvae, acclimated to different temperatures. Larvae acclimated to cooler temperatures (12 and 16 °C) were able to compensate for the temperature effect as reflected in elevated mass specific respiration rates (MSR) and enzyme activities. In contrast, warm acclimated larvae (20 and 22 °C) seem to have reached their upper thermal limits, which is reflected in MSR decoupling from temperature and low Q10 values (Zoea I: 1.4; Zoea III: 1.02). Thermal deactivation of CS in vitro occurred close to habitat temperature (between 20 and 24 °C), indicating instability of the enzyme close to in vivo thermal limits. The capacity of anaerobic metabolism, reflected by PK, was not influenced by temperature, but increased with instar, reflecting behavioral changes in larval life style. Functioning of the metabolic key enzyme CS was identified to be one possible key for larval limitation in temperature tolerance
    corecore