7 research outputs found

    Feasibility Study on Automation of Zinc Ash Skimming Process in Batch Galvanising

    No full text
    The aim of the presented feasibility study was to systematically investigate the automation of the skimming (i.e., removal) of zinc ash from the surface of the zinc bath in order to minimise the risks for workers due to mechanical hazards (risk of falling into the zinc kettle) and chemical hazards (inhalation exposure to zinc vapours) by eliminating this activity. As part of the feasibility study, automatic separation and skimming systems from various applications, such as removal systems of slags and metal foam, were identified. For this purpose, their technical feasibility and suitability were considered. Two automated techniques, a mechanical and a gas-based skimming system, were selected for the subsequent laboratory-based evaluation. In the scope of the practical feasibility study, the selected skimming techniques were designed, constructed, and evaluated based on near-process prototype tests on a laboratory scale. The focus was on the efficiency of the skimming systems, related to the removal of zinc ash from the free surface of the molten zinc (general efficiency), as well as to the zinc ash removal with a simulated attachment system of the samples to be galvanised (task-related efficiency). The desired complete removal of zinc ash from the zinc bath surface was demonstrated with two automated methods: a pulse wave method of the mechanical skimming system and a gas-based skimming system in general, operating independently from the attachment system. Additionally, as part of the process-related simulation of the complete batch galvanising process, a fully automated combination of the zinc ash skimming and extraction system was achieved on a laboratory scale

    Up-Scaling of Thermomechanically Induced Laves Phase Precipitation in High Performance Ferritic (HiperFer) Stainless Steels

    No full text
    Fully ferritic stainless steels, strengthened by Laves phase precipitates, were developed for high-temperature application in the next generation of ultra-super-critical thermal power plants. Based on the rapid occurrence of thermomechanically induced precipitation in strengthening Laves phase particles, a novel thermomechanical process route for this class of steels was developed. A controlled precipitation of particles, in a desired morphology and quantity, and an optimization of the corresponding forging parameters was achieved on a laboratory scale. This article outlines the very first up-scaling experiment with these optimized forging parameters from the laboratory scale to the industrial scale. The precipitation behavior was analyzed, utilizing digital particle analysis of scanning electron microscopy (SEM) images, to estimate and compare the phase fraction of the precipitated Laves phase, as well as the particle size and distribution. Due to the up-scaling in the forging process, the behavior of the precipitation changed and the precipitation strengthening effect was decreased, in comparison with the laboratory scale

    Compositional Optimization of High-Performance Ferritic (HiperFer) Steels—Effect of Niobium and Tungsten Content

    No full text
    The combined addition of Nb and W provides increased solid solution and precipitation strengthening by (Fe,Cr,Si)2(Nb,W)-Laves phase particles of ferritic, 17 wt.% Cr stainless high-performance ferritic (HiperFer) steel. Based on alloy modifications and the obtained hardness, tensile, and creep testing results; a new high alloying variant is proposed as a candidate steel for future structural application up to approximately 680 °C in power engineering and the process industry

    Thermomechanically Induced Precipitation in High-Performance Ferritic (HiperFer) Stainless Steels

    No full text
    Novel high-performance fully ferritic (HiperFer) stainless steels were developed to meet the demands of next-generation thermal power-conversion equipment and to feature a uniquely balanced combination of resistance to fatigue, creep, and corrosion. Typical conventional multistep processing and heat treatment were applied to achieve optimized mechanical properties for this alloy. This paper outlines the feasibility of thermomechanical processing for goal-oriented alteration of the mechanical properties of this new type of steel, applying an economically more efficient approach. The impact of treatment parameter variation on alloy microstructure and the resulting mechanical properties were investigated in detail. Furthermore, initial optimization steps were undertaken

    Compositional Optimization of High-Performance Ferritic (HiperFer) Steels : Effect of Niobium and Tungsten Content

    No full text
    The combined addition of Nb and W provides increased solid solution and precipitation strengthening by (Fe,Cr,Si)2(Nb,W)-Laves phase particles of ferritic, 17 wt.% Cr stainless high-performance ferritic (HiperFer) steel. Based on alloy modifications and the obtained hardness, tensile, and creep testing results; a new high alloying variant is proposed as a candidate steel for future structural application up to approximately 680 °C in power engineering and the process industry
    corecore