3 research outputs found
Fluoro-perovskite nanomaterials for photodynamic cancer treatment”
Upconverting nanoparticles (UCNps) possess the ability to convert light from low to high energy. In particular, the absorption of radiation by these nanomaterials in the near-infrared region of the spectrum, and their subsequent emission in the visible region, is of great interest for biomedical applications. Conventional antitumor therapies often produce a high degree of side effects. Consequently, it is proposed to investigate the development of less invasive alternative therapies as photothermal therapy, using UCNps. The upconversion property could be achieved by incorporating dopants (rare earths and transition metals) in fluorine-based crystalline environments. On the other hand, it is important to control the size of the nanoparticles for their use in biomedical applications, for that reason we plan to obtain nanoparticles with an approximate size less than 50 nm. In the present work, the development of KMgF3 fluoroperovskite nanoparticles by solvothermal synthesis is presented, applying a factorial experimental design which consists of four factors (temperature, time and two limiting reagents) at two levels and choosing the average particle size as a variable response. The samples were characterized by powder X-ray diffraction and Transmission Electron Microscopy, in order to know the crystalline phase and particle size. As a result, KMgF3 nanoparticles with an average size between 13 and 31 nm were obtained. In addition, data obtained were statistically processed by Analysis of Variance, to determine the significant factors and their interactions, achieving the optimal synthesis conditions. From these results, a series of samples doped with Mn2+ and/or Nd3+ were obtained in order to find the optimal dopant concentrations for efficient upconversion properties. Our work is the starting point for the development of UCNps allowing them to be applied in future antitumor therapies.Agencia Nacional de investigación e InnovaciónPrograma de Desarrollo de las Ciencias BásicasComisión Académica de Postgrad
Development of doped-KMgF3 fluoro-perovskite nanoparticles with upconversion properties for potential biomedical application
Upconverting nanoparticles (UCNps) possess the ability to convert light from low to high energy. In particular, the absorption of radiation by these nanomaterials in the near-infrared region of the spectrum, and their subsequent emission in the visible region, is of great interest for biomedical applications. Conventional antitumor therapies often produce a high degree of side effects. Consequently, it is proposed to investigate the development of less invasive alternative therapies as photothermal therapy, using UCNps. The upconversion property could be achieved by incorporating dopants (rare earths and transition metals) in fluorine-based crystalline environments. On the other hand, it is important to control the size of the nanoparticles for their use in biomedical applications, for that reason we plan to obtain nanoparticles with an approximate size less than 50 nm. In the present work, the development of KMgF3 fluoroperovskite nanoparticles by solvothermal synthesis is presented, applying a factorial experimental design which consists of four factors (temperature, time and two limiting reagents) at two levels and choosing the average particle size as a variable response. The samples were characterized by powder X-ray diffraction and Transmission Electron Microscopy, in order to know the crystalline phase and particle size. As a result, KMgF3 nanoparticles with an average size between 13 and 31 nm were obtained. In addition, data obtained were statistically processed by Analysis of Variance, to determine the significant factors and their interactions, achieving the optimal synthesis conditions. From these results, a series of samples doped with Mn2+ and/or Nd3+ were obtained in order to find the optimal dopant concentrations for efficient upconversion properties. Our work is the starting point for the development of UCNps allowing them to be applied in future antitumor therapies.Agencia Nacional de investigación e InnovaciónPEDECIBAComisión Académica de Postgrad
“Diseño experimental aplicado al desarrollo de nanopartículas de fluoro-perovskitas KMgF3 con propiedades de conversión ascendente con potencial aplicación biomédica”
Las nanopartículas de conversión ascendente (UCNps) poseen la capacidad de convertir la luz de baja a alta energía. En particular, la absorción de radiación de estos nanomateriales en la región infrarroja cercana (NIR) del espectro, y su posterior emisión en la región visible, resulta de gran interés para aplicaciones biomédicas. Las terapias anti-tumorales convencionales frecuentemente producen un alto grado de efectos colaterales. En consecuencia, se plantea investigar el desarrollo de terapias alternativas menos invasivas, empleando las UCNps. La propiedad de conversión ascendente se logra incorporando dopantes (tierras raras y metales de transición) en entornos cristalinos a base de flúor. En este trabajo se presenta el desarrollo de nanopartículas de fluoro-perovskita de KMgF3 mediante síntesis solvotérmica, aplicando el diseño experimental factorial, con el fin de conocer las condiciones óptimas de síntesis. Este diseño comprende cuatro factores (temperatura, tiempo y dos reactivos limitantes) a dos niveles y eligiéndose como variable de respuesta el tamaño de partícula. Las muestras fueron caracterizadas mediante difracción de rayos X de polvo y Microscopía Electrónica de Transmisión, con el fin de conocer la fase, cristalinidad y tamaño de partícula. Se obtuvieron nanopartículas de KMgF3 de tamaño promedio entre 13 y 31 nm. Los datos obtenidos fueron procesados estadísticamente mediante análisis de varianza, determinando así los factores significativos y sus interacciones, permitiendo conocer las condiciones óptimas de síntesis. Este trabajo es el punto de partida para la posterior incorporación de dopantes a las nanopartículas permitiendo en el futuro ser aplicadas en terapias anti-tumorales.Agencia Nacional de investigación e InnovaciónPrograma de Desarrollo de las Ciencias BásicasComisión Académica de Postgrad