163 research outputs found
Experimental Tests of Neutron Shielding for the ATLAS Forward Region
Experimental tests devoted to the optimization of the neutron shielding for the ATLAS forward region were performed at the CERN-PS with a 4 GeV/c proton beam. Spectra of fast neutrons, slow neutrons and gamma rays escaping a block of iron (404080 cm) shielded with different types of neutron and gamma shields (pure polyethylene - PE, borated polyethylene - BPE, lithium filled polyethylene - LiPE, lead, iron) were measured by means of plastic scintillators, a Bonner spectrometer, a HPGe detector and a slow neutron detector. Effectiveness of different types of shielding agaisnt neutrons and -rays were compared. The idea of a segmented outer layer shielding (iron, BPE, iron, LiPE) for the ATLAS Forward Region was also tested
Production of deuterium, tritium, and He in central Pb+Pb collisions at 20A, 30A, 40A, 80A, and 158A GeV at the CERN SPS
Production of , , and He nuclei in central Pb+Pb interactions was
studied at five collision energies ( 6.3, 7.6, 8.8, 12.3, and
17.3 GeV) with the NA49 detector at the CERN SPS. Transverse momentum spectra,
rapidity distributions, and particle ratios were measured. Yields are compared
to predictions of statistical models. Phase-space distributions of light nuclei
are discussed and compared to those of protons in the context of a coalescence
approach. The coalescence parameters and , as well as coalescence
radii for and He were determined as a function of transverse mass at
all energies.Comment: 22 pages, 29 figures, 8 tables, for submission to Phys. Rev.
Phase-space dependence of particle-ratio fluctuations in Pb+Pb collisions from 20A to 158A GeV beam energy
A novel approach, the identity method, was used for particle identification
and the study of fluctuations of particle yield ratios in Pb+Pb collisions at
the CERN Super Proton Synchrotron (SPS). This procedure allows to unfold the
moments of the unknown multiplicity distributions of protons (p), kaons (K),
pions () and electrons (e). Using these moments the excitation function of
the fluctuation measure [A,B] was measured, with A and
B denoting different particle types. The obtained energy dependence of
agrees with previously published NA49 results on the related
measure . Moreover, was found to depend
on the phase space coverage for [K,p] and [K,] pairs. This feature most
likely explains the reported differences between measurements of NA49 and those
of STAR in central Au+Au collisions
Search for the QCD critical point in nuclear collisions at the CERN SPS
Pion production in nuclear collisions at the SPS is investigated with the aim
to search, in a restricted domain of the phase diagram, for power-laws in the
behavior of correlations which are compatible with critical QCD. We have
analyzed interactions of nuclei of different size (p+p, C+C, Si+Si, Pb+Pb) at
158 GeV adopting, as appropriate observables, scaled factorial moments in a
search for intermittent fluctuations in transverse dimensions. The analysis is
performed for pairs with invariant mass very close to the two-pion
threshold. In this sector one may capture critical fluctuations of the sigma
component in a hadronic medium, even if the -meson has no well defined
vacuum state. It turns out that for the Pb+Pb system the proposed analysis
technique cannot be applied without entering the invariant mass region with
strong Coulomb correlations. As a result the treatment becomes inconclusive in
this case. Our results for the other systems indicate the presence of power-law
fluctuations in the freeze-out state of Si+Si approaching in size the
prediction of critical QCD.Comment: 31 pages, 11 figure
Centrality dependence of proton and antiproton spectra in Pb+Pb collisions at 40A GeV and 158A GeV measured at the CERN SPS
The yields of (anti-)protons were measured by the NA49 Collaboration in
centrality selected Pb+Pb collisions at 40A GeV and 158A GeV. Particle
identification was obtained in the laboratory momentum range from 5 to 63 GeV/c
by the measurement of the energy loss dE/dx in the TPC detector gas. The
corresponding rapidity coverage extends 1.6 units from mid-rapidity into the
forward hemisphere. Transverse mass spectra, the rapidity dependences of the
average transverse mass, and rapidity density distributions were studied as a
function of collision centrality. The values of the average transverse mass as
well as the midrapidity yields of protons when normalized to the number of
wounded nucleons show only modest centrality dependences. In contrast, the
shape of the rapidity distribution changes significantly with collision
centrality, especially at 40A GeV. The experimental results are compared to
calculations of the HSD and UrQMD transport models.Comment: 25 pages, 12 figures, submitted to PR
Energy dependence of kaon-to-proton ratio fluctuations in central Pb+Pb collisions from = 6.3 to 17.3 GeV
Kaons and protons carry large parts of two conserved quantities, strangeness
and baryon number. It is argued that their correlation and thus also
fluctuations are sensitive to conditions prevailing at the anticipated
parton-hadron phase boundary. Fluctuations of the and
ratios have been measured for the first time by NA49 in central Pb+Pb
collisions at 5 SPS energies between = 6.3 GeV and 17.3 GeV.
Both ratios exhibit a change of sign in , a measure of
non-statistical fluctuations, around = 8 GeV. Below this
energy, is positive, indicating higher fluctuation
compared to a mixed event background sample, while for higher energies,
is negative, indicating correlated emission of kaons
and protons. The results are compared to UrQMD calculations which which give a
good description at the higher SPS energies, but fail to reproduce the
transition to positive values.Comment: 5 pages, 4 figure
Proton -- Lambda Correlations in Central Pb+Pb Collisions at sqrt(s_{NN}) = 17.3 GeV
The momentum correlation between protons and lambda particles emitted from
central Pb+Pb collisions at sqrt(s_{NN}) = 17.3 GeV was studied by the NA49
experiment at the CERN SPS. A clear enhancement is observed for small relative
momenta (q_{inv} < 0.2 GeV). By fitting a theoretical model, which uses the
strong interaction between the proton and the lambda in a given pair, to the
measured data a value for the effective source size is deduced. Assuming a
static Gaussian source distribution we derive an effective radius parameter of
R_G = 3.02 \pm 0.20$(stat.)^{+0.44}_{-0.16}(syst.) fm.Comment: 14 pages, 9 figures, submitted to Phys. Rev.
Inclusive production of charged pions in p+C collisions at 158 GeV/c beam momentum
The production of charged pions in minimum bias p+C interactions is studied
using a sample of 377000 inelastic events obtained with the NA49 detector at
the CERN SPS at 158 GeV/c beam momentum. The data cover a phase space area
ranging from 0 to 1.8 GeV/c in transverse momentum and from -0.1 to 0.5 in
Feynman x. Inclusive invariant cross sections are given on a grid of 270 bins
per charge thus offering for the first time a dense coverage of the projectile
hemisphere and of the cross-over region into the target fragmentation zone.Comment: 31 pages, 30 figures, submitted to European Journal of Physic
- …