2,734 research outputs found

    Soil Ecological Processes in Vegetation Patches of Well Drained Permafrost Affected Sites (Kangerlussuaq - West Greenland)

    Get PDF

    Quantum Random Access Codes with Shared Randomness

    Full text link
    We consider a communication method, where the sender encodes n classical bits into 1 qubit and sends it to the receiver who performs a certain measurement depending on which of the initial bits must be recovered. This procedure is called (n,1,p) quantum random access code (QRAC) where p > 1/2 is its success probability. It is known that (2,1,0.85) and (3,1,0.79) QRACs (with no classical counterparts) exist and that (4,1,p) QRAC with p > 1/2 is not possible. We extend this model with shared randomness (SR) that is accessible to both parties. Then (n,1,p) QRAC with SR and p > 1/2 exists for any n > 0. We give an upper bound on its success probability (the known (2,1,0.85) and (3,1,0.79) QRACs match this upper bound). We discuss some particular constructions for several small values of n. We also study the classical counterpart of this model where n bits are encoded into 1 bit instead of 1 qubit and SR is used. We give an optimal construction for such codes and find their success probability exactly--it is less than in the quantum case. Interactive 3D quantum random access codes are available on-line at http://home.lanet.lv/~sd20008/racs .Comment: 51 pages, 33 figures. New sections added: 1.2, 3.5, 3.8.2, 5.4 (paper appears to be shorter because of smaller margins). Submitted as M.Math thesis at University of Waterloo by M

    Simulating Large Quantum Circuits on a Small Quantum Computer

    Full text link
    Limited quantum memory is one of the most important constraints for near-term quantum devices. Understanding whether a small quantum computer can simulate a larger quantum system, or execute an algorithm requiring more qubits than available, is both of theoretical and practical importance. In this Letter, we introduce cluster parameters KK and dd of a quantum circuit. The tensor network of such a circuit can be decomposed into clusters of size at most dd with at most KK qubits of inter-cluster quantum communication. We propose a cluster simulation scheme that can simulate any (K,d)(K,d)-clustered quantum circuit on a dd-qubit machine in time roughly 2O(K)2^{O(K)}, with further speedups possible when taking more fine-grained circuit structure into account. We show how our scheme can be used to simulate clustered quantum systems -- such as large molecules -- that can be partitioned into multiple significantly smaller clusters with weak interactions among them. By using a suitable clustered ansatz, we also experimentally demonstrate that a quantum variational eigensolver can still achieve the desired performance for estimating the energy of the BeH2_2 molecule while running on a physical quantum device with half the number of required qubits.Comment: Codes are available at https://github.com/TianyiPeng/Partiton_VQ

    Junior Recital: Rachel Ozols, mezzo soprano

    Get PDF

    Senior Recital: Rachel Ozols, mezzo-soprano

    Get PDF

    Zoom In, Class Out: An Event Study on Publicly Traded Ed Tech Firm Valuations During COVID-19

    Get PDF
    This paper examines how publicly traded Ed Tech firms reacted to negative announcements regarding COVID-19. Using an event study method, I document how an international portfolio of Ed Tech firms react across multiple event windows. The results show that Ed Tech firms reacted positively to the announcement of the first US death and negatively to the World Health Organization’s declaration that COVID-19 was a pandemic. Additionally, differences in geographical location did not impact cumulative abnormal returns across event windows. Finally, firm-specific characteristics such as volatility and financial leverage had little or no significance on stock returns
    • …
    corecore