6 research outputs found
Preclinical and clinical safety studies on DNA vaccines.
DNA vaccines are based on the transfer of genetic material, encoding an antigen, to the cells of the vaccine recipient. Despite high expectations of DNA vaccines as a result of promising preclinical data their clinical utility remains unproven. However, much data is gathered in preclinical and clinical studies about the safety of DNA vaccines. Here we review current knowledge about the safety of DNA vaccines. Safety concerns of DNA vaccines relate to genetic, immunologic, toxic, and environmental effects. In this review we provide an overview of findings related to the safety of DNA vaccines, obtained so far. We conclude that the potential risks of DNA vaccines are minimal. However, their safety issues may differ case-by-case, and they should be treated accordingly
Expression levels of heat shock proteins in enterocyte-like Caco-2 cells after exposure to Salmonella enteritidis
The enterocytes of the small intestine are occasionally exposed to pathogenic bacteria, such as Salmonella enteritidis 857, an etiologic agent of intestinal infections in humans. The expression of the heat shock response by enterocytes may be part of a protective mechanism developed against pathogenic bacteria in the intestinal lumen. We aimed at investigating whether S enteritidis 857 is able to induce a heat shock response in crypt- and villus-like Caco-2 cells and at establishing the extent of the induction. To establish whether S enteritidis 857 interfered with the integrity of the cell monolayer, the transepithelial electrical resistance (TEER) of filter-grown, differentiated (villus-like) Caco-2 cells was measured. We clearly observed damage to the integrity of the cell monolayer by measuring the TEER. The stress response was screened in both crypt- and villus-like Caco-2 cells exposed to heat (40–43°C) or to graded numbers (10(1)–10(8)) of bacteria and in villus-like cells exposed to S enteritidis 857 endotoxin. Expression of the heat shock proteins Hsp70 and Hsp90 was analyzed by polyacrylamide gel electrophoresis and immunoblotting with monoclonal antibodies. Exposure to heat or Salmonella resulted in increased levels of Hsp70 and Hsp90 in a temperature-effect or Salmonella-dose relationship, respectively. Incubation of Caco-2 cells with S enteritidis 857 endotoxin did not induce heat shock gene expression. We conclude that S enteritidis 857 significantly increases the levels of stress proteins in enterocyte-like Caco-2 cells. However, our data on TEER clearly indicate that this increase is insufficient to protect the cells
Estimation of manufacturing development costs of cell-based therapies: a feasibility study
Background aims: Cell-based therapies (CBTs) provide opportunities to treat rare and high-burden diseases. Manufacturing development of these innovative products is said to be complex and costly. However, little research is available providing insight into resource use and cost drivers. Therefore, this study aimed to assess the feasibility of estimating the cost of manufacturing development of two cell-based therapy case studies using a CBT cost framework specifically designed for small-scale cell-based therapies. Methods: A retrospective costing study was conducted in which the cost of developing an adoptive immunotherapy of Epstein-Barr virus-specific cytotoxic T lymphocytes (CTLs) and a pluripotent stem cell (PSC) master cell bank was estimated. Manufacturing development was defined as products advancing from technology readiness level 3 to 6. The study was conducted in a Scottish facility. Development steps were recreated via developer focus groups. Data were collected from facility administrative and financial records and developer interviews. Results: Application of the manufacturing cost framework to retrospectively estimate the manufacturing design cost of two case studies in one Scottish facility appeared feasible. Manufacturing development cost was estimated at ÂŁ1,201,016 for CTLs and ÂŁ494,456 for PSCs. Most costs were accrued in the facility domain (56% and 51%), followed by personnel (20% and 32%), materials (19% and 15%) and equipment (4% and 2%). Conclusions: Based on this study, it seems feasible to retrospectively estimate resources consumed in manufacturing development of cell-based therapies. This fosters inclusion of cost in the formulation and dissemination of best practices to facilitate early and sustainable patient access and inform future cost-conscious manufacturing design decisions
Estimation of manufacturing development costs of cell-based therapies: a feasibility study
Background aims: Cell-based therapies (CBTs) provide opportunities to treat rare and high-burden diseases. Manufacturing development of these innovative products is said to be complex and costly. However, little research is available providing insight into resource use and cost drivers. Therefore, this study aimed to assess the feasibility of estimating the cost of manufacturing development of two cell-based therapy case studies using a CBT cost framework specifically designed for small-scale cell-based therapies. Methods: A retrospective costing study was conducted in which the cost of developing an adoptive immunotherapy of Epstein-Barr virus-specific cytotoxic T lymphocytes (CTLs) and a pluripotent stem cell (PSC) master cell bank was estimated. Manufacturing development was defined as products advancing from technology readiness level 3 to 6. The study was conducted in a Scottish facility. Development steps were recreated via developer focus groups. Data were collected from facility administrative and financial records and developer interviews. Results: Application of the manufacturing cost framework to retrospectively estimate the manufacturing design cost of two case studies in one Scottish facility appeared feasible. Manufacturing development cost was estimated at ÂŁ1,201,016 for CTLs and ÂŁ494,456 for PSCs. Most costs were accrued in the facility domain (56% and 51%), followed by personnel (20% and 32%), materials (19% and 15%) and equipment (4% and 2%). Conclusions: Based on this study, it seems feasible to retrospectively estimate resources consumed in manufacturing development of cell-based therapies. This fosters inclusion of cost in the formulation and dissemination of best practices to facilitate early and sustainable patient access and inform future cost-conscious manufacturing design decisions
What does cell therapy manufacturing cost?: A framework and methodology to facilitate academic and other small-scale cell therapy manufacturing costings
BACKGROUND AIMS: Recent technical and clinical advances with cell-based therapies (CBTs) hold great promise in the treatment of patients with rare diseases and those with high unmet medical need. Currently the majority of CBTs are developed and manufactured in specialized academic facilities. Due to small scale, unique characteristics and specific supply chain, CBT manufacturing is considered costly compared to more conventional medicinal products. As a result, biomedical researchers and clinicians are increasingly faced with cost considerations in CBT development. The objective of this research was to develop a costing framework and methodology for academic and other small-scale facilities that manufacture cell-based therapies. METHODS: We conducted an international multi-center costing study in four facilities in Europe using eight CBTs as case studies. This study includes costs from cell or tissue procurement to release of final product for clinical use. First, via interviews with research scientists, clinicians, biomedical scientists, pharmacists and technicians, we designed a high-level costing framework. Next, we developed a more detailed uniform methodology to allocate cost items. Costs were divided into steps (tissue procurement, manufacturing and fill-finish). The steps were each subdivided into cost categories (materials, equipment, personnel and facility), and each category was broken down into facility running (fixed) costs and operational (variable) costs. The methodology was tested via the case studies and validated in developer interviews. Costs are expressed in 2018 euros (€). RESULTS: The framework and methodology were applicable across facilities and proved sensitive to differences in product and facility characteristics. Case study cost estimates ranged between €23 033 and €190 799 Euros per batch, with batch yield varying between 1 and 88 doses. The cost estimations revealed hidden costs to developers and provided insights into cost drivers to help design manufacturing best practices. CONCLUSIONS: This framework and methodology provide step-by-step guidance to estimate manufacturing costs specifically for cell-based therapies manufactured in academic and other small-scale enterprises. The framework and methodology can be used to inform and plan cost-conscious strategies for CBTs
What does cell therapy manufacturing cost?: A framework and methodology to facilitate academic and other small-scale cell therapy manufacturing costings
BACKGROUND AIMS: Recent technical and clinical advances with cell-based therapies (CBTs) hold great promise in the treatment of patients with rare diseases and those with high unmet medical need. Currently the majority of CBTs are developed and manufactured in specialized academic facilities. Due to small scale, unique characteristics and specific supply chain, CBT manufacturing is considered costly compared to more conventional medicinal products. As a result, biomedical researchers and clinicians are increasingly faced with cost considerations in CBT development. The objective of this research was to develop a costing framework and methodology for academic and other small-scale facilities that manufacture cell-based therapies. METHODS: We conducted an international multi-center costing study in four facilities in Europe using eight CBTs as case studies. This study includes costs from cell or tissue procurement to release of final product for clinical use. First, via interviews with research scientists, clinicians, biomedical scientists, pharmacists and technicians, we designed a high-level costing framework. Next, we developed a more detailed uniform methodology to allocate cost items. Costs were divided into steps (tissue procurement, manufacturing and fill-finish). The steps were each subdivided into cost categories (materials, equipment, personnel and facility), and each category was broken down into facility running (fixed) costs and operational (variable) costs. The methodology was tested via the case studies and validated in developer interviews. Costs are expressed in 2018 euros (€). RESULTS: The framework and methodology were applicable across facilities and proved sensitive to differences in product and facility characteristics. Case study cost estimates ranged between €23 033 and €190 799 Euros per batch, with batch yield varying between 1 and 88 doses. The cost estimations revealed hidden costs to developers and provided insights into cost drivers to help design manufacturing best practices. CONCLUSIONS: This framework and methodology provide step-by-step guidance to estimate manufacturing costs specifically for cell-based therapies manufactured in academic and other small-scale enterprises. The framework and methodology can be used to inform and plan cost-conscious strategies for CBTs