23 research outputs found

    Fast Approximate Clearance Evaluation for Rovers with Articulated Suspension Systems

    Full text link
    We present a light-weight body-terrain clearance evaluation algorithm for the automated path planning of NASA's Mars 2020 rover. Extraterrestrial path planning is challenging due to the combination of terrain roughness and severe limitation in computational resources. Path planning on cluttered and/or uneven terrains requires repeated safety checks on all the candidate paths at a small interval. Predicting the future rover state requires simulating the vehicle settling on the terrain, which involves an inverse-kinematics problem with iterative nonlinear optimization under geometric constraints. However, such expensive computation is intractable for slow spacecraft computers, such as RAD750, which is used by the Curiosity Mars rover and upcoming Mars 2020 rover. We propose the Approximate Clearance Evaluation (ACE) algorithm, which obtains conservative bounds on vehicle clearance, attitude, and suspension angles without iterative computation. It obtains those bounds by estimating the lowest and highest heights that each wheel may reach given the underlying terrain, and calculating the worst-case vehicle configuration associated with those extreme wheel heights. The bounds are guaranteed to be conservative, hence ensuring vehicle safety during autonomous navigation. ACE is planned to be used as part of the new onboard path planner of the Mars 2020 rover. This paper describes the algorithm in detail and validates our claim of conservatism and fast computation through experiments

    惑星探査ローバの画像航法誘導における知能化に関する研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 久保田 孝, 東京大学教授 橋本 樹明, 東京大学教授 古関 隆章, 東京大学准教授 大石 岳史, 東京大学教授 伊庭 斉志, 東京大学准教授 矢入 健久University of Tokyo(東京大学

    Where to Map? Iterative Rover-Copter Path Planning for Mars Exploration

    Full text link
    In addition to conventional ground rovers, the Mars 2020 mission will send a helicopter to Mars. The copter's high-resolution data helps the rover to identify small hazards such as steps and pointy rocks, as well as providing rich textual information useful to predict perception performance. In this paper, we consider a three-agent system composed of a Mars rover, copter, and orbiter. The objective is to provide good localization to the rover by selecting an optimal path that minimizes the localization uncertainty accumulation during the rover's traverse. To achieve this goal, we quantify the localizability as a goodness measure associated with the map, and conduct a joint-space search over rover's path and copter's perceptual actions given prior information from the orbiter. We jointly address where to map by the copter and where to drive by the rover using the proposed iterative copter-rover path planner. We conducted numerical simulations using the map of Mars 2020 landing site to demonstrate the effectiveness of the proposed planner.Comment: 8 pages, 7 figure

    Toward Specification-Guided Active Mars Exploration for Cooperative Robot Teams

    Get PDF
    As a step towards achieving autonomy in space exploration missions, we consider a cooperative robotics system consisting of a copter and a rover. The goal of the copter is to explore an unknown environment so as to maximize knowledge about a science mission expressed in linear temporal logic that is to be executed by the rover. We model environmental uncertainty as a belief space Markov decision process and formulate the problem as a two-step stochastic dynamic program that we solve in a way that leverages the decomposed nature of the overall system. We demonstrate in simulations that the robot team makes intelligent decisions in the face of uncertainty

    PLGRIM: Hierarchical Value Learning for Large-scale Exploration in Unknown Environments

    Full text link
    In order for an autonomous robot to efficiently explore an unknown environment, it must account for uncertainty in sensor measurements, hazard assessment, localization, and motion execution. Making decisions for maximal reward in a stochastic setting requires value learning and policy construction over a belief space, i.e., probability distribution over all possible robot-world states. However, belief space planning in a large spatial environment over long temporal horizons suffers from severe computational challenges. Moreover, constructed policies must safely adapt to unexpected changes in the belief at runtime. This work proposes a scalable value learning framework, PLGRIM (Probabilistic Local and Global Reasoning on Information roadMaps), that bridges the gap between (i) local, risk-aware resiliency and (ii) global, reward-seeking mission objectives. Leveraging hierarchical belief space planners with information-rich graph structures, PLGRIM addresses large-scale exploration problems while providing locally near-optimal coverage plans. We validate our proposed framework with high-fidelity dynamic simulations in diverse environments and on physical robots in Martian-analog lava tubes

    Self-Supervised Traversability Prediction by Learning to Reconstruct Safe Terrain

    Full text link
    Navigating off-road with a fast autonomous vehicle depends on a robust perception system that differentiates traversable from non-traversable terrain. Typically, this depends on a semantic understanding which is based on supervised learning from images annotated by a human expert. This requires a significant investment in human time, assumes correct expert classification, and small details can lead to misclassification. To address these challenges, we propose a method for predicting high- and low-risk terrains from only past vehicle experience in a self-supervised fashion. First, we develop a tool that projects the vehicle trajectory into the front camera image. Second, occlusions in the 3D representation of the terrain are filtered out. Third, an autoencoder trained on masked vehicle trajectory regions identifies low- and high-risk terrains based on the reconstruction error. We evaluated our approach with two models and different bottleneck sizes with two different training and testing sites with a fourwheeled off-road vehicle. Comparison with two independent test sets of semantic labels from similar terrain as training sites demonstrates the ability to separate the ground as low-risk and the vegetation as high-risk with 81.1% and 85.1% accuracy
    corecore