9 research outputs found

    Surveillance of endemic human coronaviruses (HCoV-NL63, OC43 and 229E) associated with pneumonia in Kilifi, Kenya

    Get PDF
    Introduction: Human coronaviruses (HCoVs) circulate endemically in human populations, often with seasonal variation. We describe the long-term patterns of paediatric disease associated with three of these viruses, HCoV-NL63, OC43 and 229E, in coastal Kenya. Methods: Continuous surveillance of pneumonia admissions was conducted at the Kilifi county hospital (KCH) located in the northern coastal region of Kenya. Children aged &lt;5 years admitted to KCH with clinically defined syndromic severe or very severe pneumonia were recruited. Respiratory samples were taken and tested for 15 virus targets, using real-time polymerase chain reaction. Unadjusted odds ratios were used to estimate the association between demographic and clinical characteristics and HCoV positivity. Results: From 2007 to 2019, we observed 11,445 pneumonia admissions, of which 314 (3.9%) tested positive for at least one HCoV type. There were 129 (41.1%) OC43, 99 (31.5%) 229E, 74 (23.6%) NL63 positive cases and 12 (3.8%) cases of HCoV to HCoV coinfection.  Among HCoV positive cases, 47% (n=147) were coinfected with other respiratory virus pathogens. The majority of HCoV cases were among children aged &lt;1 year (66%, n=208), though there was no age-dependence in the proportion testing positive. HCoV-OC43 was predominant of the three HCoV types throughout the surveillance period. Evidence for seasonality was not identified. Conclusions: Overall, 4% of paediatric pneumonia admissions were associated with three endemic HCoVs, with a high proportion of cases co-occurring with another respiratory virus, with no clear seasonal pattern, and with the age-distribution of cases following that of pneumonia admissions (i.e. highest in infants). These observations suggest, at most, a small severe disease contribution of endemic HCoVs in this tropical setting and offer insight into the potential future burden and epidemiological characteristics of SARS-CoV-2.</ns4:p

    Surveillance of endemic human coronaviruses (HCoV-NL63, OC43 and 229E) associated with childhood pneumonia in Kilifi, Kenya.

    Get PDF
    Introduction: Human coronaviruses (HCoVs) circulate endemically in human populations, often with seasonal variation. We describe the long-term patterns of paediatric disease associated with three of these viruses, HCoV-NL63, OC43 and 229E, in coastal Kenya. Methods: Continuous surveillance of pneumonia admissions was conducted at the Kilifi county hospital (KCH) located in the northern coastal region of Kenya. Children aged <5 years admitted to KCH with clinically defined syndromic severe or very severe pneumonia were recruited. Respiratory samples were taken and tested for 15 virus targets, using real-time polymerase chain reaction. Unadjusted odds ratios were used to estimate the association between demographic and clinical characteristics and HCoV positivity. Results: From 2007 to 2019, we observed 11,445 pneumonia admissions, of which 314 (3.9%) tested positive for at least one of the HCoV types surveyed in the study. There were 129 (41.1%) OC43, 99 (31.5%) 229E, 74 (23.6%) NL63 positive cases and 12 (3.8%) cases of HCoV to HCoV coinfection.  Among HCoV positive cases, 47% (n=147) were coinfected with other respiratory virus pathogens. The majority of HCoV cases were among children aged <1 year (66%, n=208), though there was was no change in the proportion infected by age. HCoV-OC43 was predominant of the three HCoV types throughout the surveillance period. Evidence for seasonality was not identified. Conclusions: Overall, 4% of paediatric pneumonia admissions were associated with three endemic HCoVs, with a high proportion of cases co-occurring with another respiratory virus, no clear seasonal pattern, and with the age-distribution of cases following that of pneumonia admissions (i.e. highest in infants). These observations suggest, at most, a small severe disease contribution of endemic HCoVs in this tropical setting and offer insight into their potential future burden and epidemiological characteristics

    Respiratory syncytial virus seasonality in three epidemiological zones of Kenya

    Get PDF
    Understanding respiratory syncytial virus (RSV) circulation patterns is necessary to guide the timing of limited‐duration interventions such as vaccines. We describe RSV circulation over multiple seasons in three distinct counties of Kenya during 2006‐2018. Kilifi and Siaya counties each had consistent but distinct RSV seasonality, lasting on average 18‐22 weeks. Based on data from available years, RSV did not have a clear pattern of circulation in Nairobi. This information can help guide the timing of vaccines and immunoprophylaxis products that are under development

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Replication Data for: Surveillance of endemic human coronaviruses (HCoV-NL63, OC43 and 229E) associated with pneumonia in Kilifi, Kenya

    No full text
    These data is part of the long-term continuous respiratory virus surveillance among pneumonia admissions to Kilifi County Hospital (KCH) study.It contains results of specimens collected between January 2007 and December 2019 which were were processed and screened for 3 HCoVs (OC43, NL63 and 229E) and at least 12 other respiratory viral pathogens using real-time polymerase chain reaction (RT-PCR). Aside from that, it also contains the patients’ sociodemographic characteristics (sex and age) and presenting symptoms. The data is used to describe the long-term patterns of paediatric disease associated with three viruses, HCoV-NL63, OC43 and 229E, in coastal Kenya

    Data for Surveillance of endemic human coronaviruses (HCoV-NL63, OC43 and 229E) associated with pneumonia in Kilifi, Kenya

    No full text
    Introduction: Human coronaviruses (HCoVs) circulate endemically in human populations, often with seasonal variation. We describe the long-term patterns of paediatric disease associated with three of these viruses, HCoV-NL63, OC43 and 229E, in coastal Kenya. Methods: Continuous surveillance of pneumonia admissions was conducted at the Kilifi county hospital (KCH) located in the northern coastal region of Kenya. Children aged <5 years admitted to KCH with clinically defined syndromic severe or very severe pneumonia were recruited. Respiratory samples were taken and tested for 15 virus targets, using real-time polymerase chain reaction. Unadjusted odds ratios were used to estimate the association between demographic and clinical characteristics and HCoV positivity. Results: From 2007 to 2019, we observed 11,445 pneumonia admissions, of which 314 (3.9%) tested positive for at least one of the HCoV types surveyed in the study. There were 129 (41.1%) OC43, 99 (31.5%) 229E, 74 (23.6%) NL63 positive cases and 12 (3.8%) cases of HCoV to HCoV coinfection. Among HCoV positive cases, 47% (n=147) were coinfected with other respiratory virus pathogens. The majority of HCoV cases were among children aged <1 year (66%, n=208), though there was was no change in the proportion infected by age. HCoV-OC43 was predominant of the three HCoV types throughout the surveillance period. Evidence for seasonality was not identified. Conclusions: Overall, 4% of paediatric pneumonia admissions were associated with three endemic HCoVs, with a high proportion of cases co-occurring with another respiratory virus, no clear seasonal pattern, and with the age-distribution of cases following that of pneumonia admissions (i.e. highest in infants). These observations suggest, at most, a small severe disease contribution of endemic HCoVs in this tropical setting and offer insight into their potential future burden and epidemiological characteristics
    corecore