40 research outputs found

    The Strength Characterisation of Concrete Made with Alumina Waste Filler

    Get PDF
    This study covers an in-depth investigation into the properties and practicality of the utilization of up to 40% Alumina Waste Filler (AWF) as a partial Portland Cement (PC) replacement material. AWF is a by-product from the recycling of aluminium, produced when salt slag is smelted and cleaned. Its use in concrete will lessen the landfill requirements for AWF disposal, and reduce the strain of the growing requirements and cost of PC. The results obtained from this study showed that the addition of AWF to the concrete mix caused a reduction in the compressive and tensile splitting strength values, and a less-workable concrete was achieved for every increase in the quantity of AWF added to each mix. The addition of AWF influenced the hydration reaction process and reduced the cumulative production of the heat of hydration over time, whilst the permeability of the concrete decreased

    Role of Gypsum Content on the Long-Term Performance of Lime-Stabilised Soil

    Get PDF
    The role of gypsum level on the long-term strength and expansion of soil stabilised with different lime contents is not well understood. This research, therefore, studied the effect of varying gypsum concentrations of 0, 3, 6, and 9 wt% (equivalent to the sulfate contents of 0, 1.4, 2.8, and 4.2%, respectively) on the performance of sulfate soil stabilised with two lime levels (4 and 6 wt%). This was carried out to establish the threshold level of gypsum/lime (G/L) at which the increase in G/L ratio does not affect the performance of lime-stabilised sulfate soil. Both unconfined compressive strength (UCS) and expansion, along with the derivative thermogravimetric (DTG) analysis, were adopted to accomplish the present objective. Accordingly, the result indicated that the strength and expansion were proportional to the lime and sulfate content, of which a G/L ratio of 1.5 was the optimum case scenario for UCS, and at the same time, the worst-case scenario for expansion. This discovery is vital, as it is anticipated to serve as a benchmark for future research related to the design of effective binders for suppressing the sulfate-induced expansion in lime-stabilised gypseous soil

    Optimization of MgO-GGBS Cementitious Systems Using Thermo-Chemical Approaches

    Get PDF
    The current study investigated the development of a sustainable thermo-chemical approach to effectively optimize MgO-waste activated GGBS formulations, using four types of magnesium oxide (MgO) waste materials with ground granulated blast-furnace slag (GGBS) to develop binary cementitious systems (MgO-GGBS). This stems from the expected complexity of cementitious binder optimization outcomes into a simpler analytic form, enhancing the rapid delivery of optimization results and contributing to the global awareness of sustainable approaches and use of industrial wastes. Three levels of Portland cement by weight (90, 80, and 70 wt.%) was replaced with MgO wastes including an industrial by-product (GGBS) to develop an experimental regime. Investigation was carried out by employing an experiment-based optimisation technique (thermo-chemical approach), which involved the design of an experimental regime and application of experimental tests (pH measurements, thermogravimetric and derivative thermogravimetric analysis—TG/DTG and isothermal calorimetry), establishment of design variable/parameters, measurement of the design performance of the identified design parameters, and review of the relationship between the independent (control) and dependent variables (MgO wastes and their compositions). The experimental test results successfully optimised the binder compositions, established the best performing binder system (MG1), and provided an in-depth insight into the thermal stability and hydration kinetics of the investigated binder systems

    Strength and Swell Performance of High-sulphate Kaolinite Clay Soil

    Get PDF
    Expansion of soils has been found to produce significant negative economic and environmental impact on various civil engineering infrastructure. This impact is more deleterious in soils containing sulphates, when treated with calcium-based stabilizers such as Lime and/or Portland cement (PC). The reported study investigated the strength and swell characteristics of Kaolinite clay artificially induced with high levels of Gypsum (sulphate) contents after stabilization with CEM I (PC), which is a calcium-based stabilizer. An optimum stabilizer content/Gypsum dosage, aimed at investigating the maximum magnitude of expansion possible using high levels of 10, 15 and 20% Gypsum contents (4.7, 7 and 9.3 wt.% sulphate) stabilized with calcium-based content of 7, 8, 9 and 10 wt.%. This was expected to provide further understanding on the mechanisms behind high sulphate-bearing clay soils, and the impact of sulphate and calcium content on strength and swell characteristics. The research outcomes showed that the introduction of sulphate to a Kaolinite clay soil reduces the compressive strength of the stabilised product by a factor range of 6–47% at 28 days curing age, while the swell behaviour is mainly dependent on both the sulphate content and curing age. Furthermore, the observed result suggests an 8 wt.% binder content to produce maximum magnitude of expansion (swell) with a high Gypsum content of 10% by weight. This finding is of economic importance, as it is expected to serve as a benchmark for further research on the stabilized clay systems, at high sulphate levels using sustainable binder materials
    corecore