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Abstract: The current study investigated the development of a sustainable thermo-chemical ap-

proach to effectively optimize MgO-waste activated GGBS formulations, using four types of mag-

nesium oxide (MgO) waste materials with ground granulated blast-furnace slag (GGBS) to develop 

binary cementitious systems (MgO-GGBS). This stems from the expected complexity of cementi-

tious binder optimization outcomes into a simpler analytic form, enhancing the rapid delivery of 

optimization results and contributing to the global awareness of sustainable approaches and use of 

industrial wastes. Three levels of Portland cement by weight (90, 80, and 70wt.%) was replaced with 

MgO wastes including an industrial by-product (GGBS) to develop an experimental regime. Inves-

tigation was carried out by employing an experiment-based optimisation technique (thermo-chem-

ical approach), which involved the design of an experimental regime and application of experi-

mental tests (pH measurements, thermogravimetric and derivative thermogravimetric analysis—

TG/DTG and isothermal calorimetry), establishment of design variable/parameters, measurement 

of the design performance of the identified design parameters, and review of the relationship be-

tween the independent (control) and dependent variables (MgO wastes and their compositions). 

The experimental test results successfully optimised the binder compositions, established the best 

performing binder system (MG1), and provided an in-depth insight into the thermal stability and 

hydration kinetics of the investigated binder systems. 

Keywords: magnesium oxide waste; cementitious binder; industrial by-products; heat of hydration; 

isothermal calorimetry; thermogravimetry 

 

1. Introduction 

The production and application of new cementitious materials can be a cumbersome 

task in understanding and discovering an optimum mix composition. This is due to the 

virtually infinite number of possible binder compositions (different oxides stoichiometry) 

that could be investigated even if one is restricted to the main material oxides (Ca, MgO, 

SiO2, Al2O3, and H2O) to produce calcium silicate hydrate (C-S-H) and magnesium silicate 

hydrate (M-S-H) precipitate amongst other formations [1–5]. Abdolhosseini Qomi et al. 

[6] suggested that small differences in the structure and composition could significantly 

impact on the properties of the developing binder systems. This could be further compli-

cated based on the impact of the thermodynamic conditions (pH, temperature, relative 

humidity, pressure, etc.) on the structure of the developed binders at varying composi-

tions [7]. 

The traditional Edisonian technique for optimization constantly used by various re-

searchers (i.e., adding varying/random fractions of SCMs to PC or MgO) based on a “trial-

and-error” approach has been found to possess limited or inaccurate results, which will 

not likely result in further research discovery [8]. This necessitated the investigation and 
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application of several systemic/theoretical optimisation techniques such as expert, algo-

rithmic/mathematical (Tagushi, Maxwell, and PROMETHEE II method), and experiment-

based optimisation techniques. The expert and algorithmic/mathematical (Tagushi, Max-

well, and PROMETHEE II method) technique has been reported to be often time-consum-

ing, is critically reliant on the existence of large databases of reliable and consistent data 

that are presently lacking, and requires a step-by-step method for establishing the right 

mix composition and associated parameters to obtain the most effective blend system. 

However, the experiment-based optimisation technique could require a certain level of 

technical knowledge and expertise for its application [9–14]. The basic principle that un-

derpins the experiment-based optimisation technique involves the design of an experi-

mental regime and application of experimental tests (isothermal calorimetry, TG/DTG, 

and pH measurements), the identification and establishment the design variable/parame-

ters with maximum and minimum limits, the measurement of the design performance of 

the identified design parameters (hydration kinetics etc.), and a review of the relationship 

between the independent (control) and dependent variables (MgO wastes and their com-

positions). Recent investigations into the sustainable application of MgO for cementitious 

systems have shown its potential to mitigate the negative environmental impacts of PC 

[2,15,16]. Yi et al. [17] compared the use of MgO and PC for developing cementitious 

binder systems and found 70–72% less energy consumption, a 65–79% CO2 emission re-

duction, and a 6–13% reduction in the cost of MgO production compared to PC. 

Regarding the design parameters, it is worth noting that the performance of cementi-

tious formulations has recently been found to be a key focal point of interest with respect 

to the monitoring of heat evolution during a hydration process. This stems from the hy-

pothesis that the performance of cementitious systems could be predicted by monitoring 

the generated heat during hydration, which can be measured by a calorimeter [18]. There-

fore, the heat of hydration, which is the integral of the heat production rate (thermal 

power) in a hydration process, is very essential for investigating hydration rates, variation 

in temperature changes within the cementitious binder composition, and classification of 

binder compositions based on their reactivity [19,20]. Some thermochemical approaches 

have been used to evaluate the hydration kinetics of Portland cement [18,21,22]. Never-

theless, the application of isothermal calorimetry, thermogravimetric and derivative ther-

mogravimetric analysis (TG/DTG), and pH measurements for MgO-GGBS system have 

not been well-established in the existing literature for binder optimisation. Until now, 

most researchers have concentrated on the application of this experimental tool at a later 

stage of research for a predetermined mix composition, rather than the initial optimization 

of cementitious binder systems. Therefore, the laboratory tests will be employed as an 

optimization tool in the current study to further simplify the expected complexity of the 

optimisation of an emerging binder system (MgO-GGBS) into a simpler analytic form that 

can be examined from the laboratory tests. 

The current study reports the outcome of a thermo-chemical optimisation approach, 

which was employed to establish the best performing MgO-waste:GGBS binder system 

developed from four (4) different types of MgO-waste material, upon inclusion with 

GGBS based on the aforementioned design parameters (intensity of heat of hydration, al-

kalinity levels, magnitude and duration of forming calorimetric peaks, type and magni-

tude of the formed hydration cementitious peaks, and overall thermal behaviour of the 

developed binder systems). The outcomes of this study were intended to provide further 

insight into the hydration kinetics of using MgO wastes and GGBS as an activator and 

precursor, respectively, in relation to binder optimization and improve on the sustaina-

bility impacts of applying this thermo-chemical approach. However, optimization as re-

lated to the chemical and thermal performance of the binder systems was only considered 

in the current study. 
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2. Materials and Methodology 

2.1. Materials 

Characterisation of materials employed in research is a key parameter of understand-

ing the composition/structure of the investigated material and potential performance 

within a system developed prior to any optimization process. The materials used for this 

research were Portland cement—PC (CEM 1-42.5N), magnesium oxide wastes (MgO), 

ground granulated blast-furnace slag (GGBS), and de-ionized water. PC was manufac-

tured in compliance with BS EN 197-1 [23] and supplied by Lafarge Cement UK. GGBS as 

a latent hydraulic material was supplied and used in accordance with BS EN 15,167-1 [24] 

by Civil and Marine Ltd., Llanwern, Newport, UK. The MgO specimens are waste prod-

ucts obtained as by-products from the mining activities of magnesite (MgCO3) by Magne-

sitas Navarras, Navarra, Spain. There are four (4) different types of MgO wastes, which 

are identified as MG1, MG2, MG3, and MG4 in the current study. XRD (X-ray diffraction) 

analysis was carried out on the raw binder samples under room temperature using a 

STOE Powder Diffraction System with operating conditions of CuKα sealed tube. This 

was operated at a radiation of 1.54060 nm with a measurement range from 10 to 8002θ at 

0.0150 step in compliance with ASTM C1365–18 [21]. A qualitative phase analysis (QPA) 

was further carried out on the XRD patterns using a Match3! Analysis software to identify 

the crystalline cement phases [22]. 

Tables 1 and 2 and Figure 1 shows the chemical composition, properties, and XRD 

plots for all the binder materials (CEM I, MG1, MG2, MG3, MG4, and GGBS). Some of the 

main identified crystalline phases are periclase (MgO) at 42.9, 62.3, 75.1, and 78.92θ(0), 

lime (CaO), quartz (SiO2), anhydrite (CaSO4), and alite (3CaO·SiO2). It was observed that 

calcium oxide (CaO), silicon dioxide (SiO2), magnesium oxide (MgO), and sulphur triox-

ide (SO3) are the dominant elements within the compositions of the identified magnesium 

oxide wastes. This was further substantiated by the XRD patterns indicating the crystal-

lized forms (minor clinker and cement phases) of the identified elements as periclase 

(MgO) at 42.9, 62.3, 75.1, and 78.92θ(0), lime (CaO), quartz (SiO2), gypsum (Anhydrite—

CaSO4), and alite (3CaO·SiO2). 

Table 1. Chemical composition of blended materials. 

Oxide 
Composition (wt.%) 

CEM I MG1 MG2 MG3 MG4 GGBS 

CaO 61.49 9.39 3.28 6.02 32.41 37.99 

SiO2 18.84 2.51 3.33 4.90 1.20 35.54 

Al2O3 4.77 0.52 0.83 1.09 0.52 11.46 

MgO 3.54 56.26 78.44 45.61 24.79 8.78 

Fe2O3 2.87 2.13 2.82 2.43 1.05 0.42 

Mn2O3 0.05 0.15 0.27 0.16 0.08 0.43 

SO3 3.12 6.22 0.30 1.85 17.83 1.54 

TiO2 0.26 0.01 <0.01 0.04 <0.01 0.70 

K2O 0.57 0.18 0.10 0.10 0.23 0.43 

Na2O 0.02 0.09 0.03 0.06 0.13 0.37 

P2O5 0.10 0.06 0.06 0.06 0.05 0.02 

V2O5 0.06 0.10 <0.01 0.10 0.07 0.04 

BaO 0.05 0.01 <0.01 0.01 <0.01 0.09 

L.O.I 4.30 22.30 10.70 37.40 21.80 2.00 
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Table 2. Properties of blended materials. 

Properties 
Binders 

CEM 1 MG1 MG2 MG3 MG4 GGBS 

Particle diameter       

Median d50 (µm) 18.86 16.24 18.72 62.74 6.52 13.69 

Physical properties       

Colour Grey 
Light-

Brown 

Very pale 

brown 

Greyish 

brown 

Pale 

brown 
Off-white 

Bulk density (kg/m3) - - - - - 1200 

Particle density/Specific 

gravity (Mg/m3) 
3.16 2.86 2.91 2.88 2.65 2.90 

Others       

pH value 12.86 10.79 12.04 11.09 12.95 10.20 

Reactivity (m) - 30 1.8 >1440 >1440 - 

 

Figure 1. XRD plots for binder materials. 

The XRD patterns for GGBS indicate a rather glassy phase, while the particle size 

distribution as shown in Figure 2 was performed using a Malvern Mastersizer 2000 equip-

ment in accordance with BS EN ISO 17,892–4 [25], and it indicates that the d50 values for 

MG1, MG2, MG3, and MG4 as 16.24, 18.72, 62.74, and 6.52 µm, respectively. This shows 

that MG4 was the finest material, while MG3 was the least fine material among the four 

types of binders. Additionally, the reactivity values as shown in Table 2 indicate the level 

of reactivity for each MgO waste material. However, it should be noted that smaller values 

indicate high reactivity [26]. Therefore, in the order of reactivity, MG1 is more reactive 

than others while MG3 is the least reactive. 
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Figure 2. Particle size distribution curves for CEM I, MG1, MG2, MG3, and MG4 and GGBS. 

2.2. Mix Design and Sample Preparation 

The dry MgO-waste-GGBS mixtures were designed with the mind-set of using MgO 

as a waste material (blend mixtures with a large amount of MgO-waste) to activate lower 

proportions of GGBS. This was found to be necessary due to the current trend of using 

MgO as an activator [2,3,5,27,28], instead of exploiting the overall expected sustainability 

potential and impact of using MgO in large quantities as a waste material within a mix 

design. Table 3 shows the mix design for seventeen (17) blend compositions for the dry 

sample mixtures. They were produced by using three (3) levels of MgO-waste proportions 

by weight (90, 80, and 70 wt.%) with GGBS to produce groups of four blend systems (MG1, 

MG2, MG3, and MG4), while the control mix was composed of 100wt.%CEM I. The dry 

powders of MgO-waste with GGBS were measured to the predetermined quantities, 

placed in a mechanical mixer, and thoroughly mixed for 10 min. This was done to ensure 

the homogeneity of the mixtures, as it was established that the attainment of homogeneity 

for dry binder samples could be problematic due to the inherent lower shear force be-

tween the fine particles, even with increased blending time [20]. Additionally, ceramic 

balls were placed in the mechanical mixer to further improve on the homogeneity of the 

mixes. Afterwards, the blended mixes were stored in well-labelled flat tins and placed in 

a desiccator after the completion of the mixing regime. Figure 3 shows the schematic lay-

out of the experimental mix design. 
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Table 3. Experimental mix blends showing anhydrous blend mixes. 

Mix System Blend Composition 
Composition (wt.%) 

CEM 1 MG1 MG2 MG3 MG4 GGBS 

CEM I system 

(Control) 
100CEM 1:0GGBS 100 - - - - - 

MG1 System 

90MG1:10GGBS - 90 - - - 10 

80MG1:20GGBS - 80 - - - 20 

70MG1:30GGBS - 70 - - - 30 

MG2 system 

90MG2:10GGBS - - 90 - - 10 

80MG2:20GGBS - - 80 - - 20 

70MG2:30GGBS - - 70 - - 30 

MG3 system 

90MG3:10GGBS - - - 90 - 10 

80MG3:20GGBS - - - 80 - 20 

70MG3:30GGBS - - - 70 - 30 

MG4 system 

90MG4:10GGBS - - - - 90 10 

80MG4:20GGBS - - - - 80 20 

70MG4:30GGBS - - - - 70 30 

 

Figure 3. A schematic representation of the experimental mix design. 

2.3. Experimental Techniques 

The pH values for each binder composition were obtained in accordance with BS EN 

ISO 787-9 [29] using a Hanna HI-8314 water-resistant hand-held pH, mV/Temperature 

Meter with an HI-1217D pre-amplified pH electrode/internal temperature sensor at an 

accuracy of ±0.01. The test was carried out in triplicate and the average value evaluated 

and recorded. A suspension was developed using five grams (5 g) of the designed blend 

mixtures (Table 3) with 50 mL of deionized water in a 100 mL glass beaker and mixed 

vigorously using a magnetic stirrer. The suspension was allowed to stand for 5 min to 

allow the residue to settle. Afterwards, the electrode in the portable pH/mV/°C meter was 

then inserted in the solution and the pH value obtained. The thermal analysis (thermo-

gravimetric and derivative thermogravimetric analyses (TG/DTG)) was investigated us-

ing a Hi-Res TGA55 TA Instrument thermal apparatus for the phases present in the hy-

dration reaction of the blended compositions in compliance with ASTM E2550–17 [30]. 

The dry sample mixtures were initially placed in a desiccator at a low temperature of 400 

°C containing silica gel for accelerated drying of samples to a constant weight. This was 

performed to remove any free water and to preserve the hydration products and any other 

combustible phases [31]. The dry sample mixtures were tested in alumina crucibles under 



Sustainability 2021, 13, 9378 7 of 22 
 

an argon gas atmosphere at a heating rate of 100 °C/min up to 1000 °C. The weight loss 

(%) and derivative weight d(Weight)/d(D) (%/°C) data were logged, collated, and ana-

lysed using a TRIOS Thermal Analysis software. 

Calorimetric analysis was carried out to investigate the hydration kinetics of the pro-

posed experimental blend mixtures (binders) by directly measuring the rate of heat pro-

duced during the hydration process within a thermostated isothermal calorimetry cham-

ber. The heat production rate (thermal power) was determined at a controlled tempera-

ture for a period of 72 h using a ToniCAL Isothermal Calorimeter from Toni Technik, 

Germany (Figure 4). Five grams (5 g) of the dry sample for the different types of MgO-

GGBS compositions were placed in a calorimetry specimen tube [32]. The specimen tube 

was placed in the calorimetry chamber covered with a lid, and deionized water was in-

troduced using a syringe after equilibrium had been achieved within the thermostated 

chamber to produce a paste using a w/b of 0.5. The heat produced during the hydration 

reaction was detected, stored, and analysed using a data acquisition system (ToniDCA 

Analysis software) in compliance with BS EN 196–11 [33]. 

 

Figure 4. A schematic representation of a ToniCAL Isothermal Calorimeter. 

3. Results 

3.1. pH Analysis 

Figure 5 presents an illustration of the pH levels for the various MgO-waste:GGBS 

mix compositions that were produced for each binder system. The results show the per-

formance of the pH levels of binder compositions using three (3) high levels (90, 80, and 

70 wt.%) of MgO wastes (MG1, MG2, MG3, and MG4) with GGBS and 100 wt.% CEM I 

(Control). It was observed that the mix compositions within the M4 binder system all pro-

duced significant pH values of 13 (90 wt.%), 13.1 (80 wt.%), and 13.1 (70 wt.%), which are 

all 5% lower than that of the control mix (100 wt.% CEM I) that produced a pH value of 

13.9. An obvious reason for this trend could be due to the combined individual amount of 

Calcium (Ca) content from MG4 and GGBS present within the blend compositions for 

MG4 blend systems. However, the MG2, MG3, and MG1 binder systems all produced 

lower pH values within the range of 11.1–11.2, which was about 23–25% lower than that 

of the control mix. A possible justification for the lower pH values could be due to the 

lower combined amount of Ca present within the MgO:GGBS compositions within each 

binder system (MG2, MG3, and MG1). Generally, the results of the pH values indicate that 

all the mix compositions within each binder system are all alkaline (basic) in nature (11–

14). 
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Figure 5. pH summary of mix blend systems. 

3.2. Thermal Analysis 

Figures 6–9 shows the TG/DTG plots for all the blend compositions within each MgO 

waste blend system. Generally, MgO wastes had a large impact on the hydration process 

as they can be seen to have influenced the pattern of the TG/DTG curves that were pro-

duced for all the blended mixtures compared with GGBS. 

 

Figure 6. TG and DTG analysis results for blended mixtures with MG2 waste. 
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Figure 7. TG and DTG analysis results for blended mixtures with MG2 waste. 

 

Figure 8. TG and DTG analysis results for blended mixtures with MG3 waste. 
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Figure 9. TG and DTG analysis results for blended mixtures with MG4 waste. 

Four main endothermic peaks are evident at location points 1, 2, 3, and 4 for blend 

systems MG1, MG3, and MG4 with corresponding weight losses at varying temperature 

ranges. However, blend compositions in the MG2 blend system only achieved three en-

dothermic peaks. The position of each endothermic peak depends mainly on the type of 

structure and the binding of the hydroxyls of the MgO wastes and GGBS, whereas their 

(endothermic peaks) shape and range depend more on the crystallinity or particle size 

distribution of the MgO wastes and GGBS [34]. The highest peak intensities were devel-

oped by MG3 type of MgO waste material at every location (1, 2, 3, and 4) followed by 

MG1, MG4, and MG2, respectively. This trend of peak intensity heights was also concur-

rent with the blend compositions (90, 80, and 70 wt.% MgO content) produced by the MgO 

wastes as they could have been largely influenced by the MgO waste material in each 

composition. It was also evident that all the blend compositions in each blend system ex-

hibited the same pattern as the individual MgO material waste. This suggests that the 

MgO material had a major influence on the performance of the developing MgO:GGBS 

binder. However, this was not the case for the individual GGBS as it exhibited only an 

endothermic peak at 680 °C, which is the lowest peak intensity. For the MgO:GGBS sys-

tems, all the blend compositions with 90 wt.% MgO content produced the highest endo-

thermic peak intensity for all the blend systems. Moreover, there was a gradual reduction 

in endothermic peak intensities for every gradual reduction in the quantity of MgO waste 

(90, 80, and 70 wt.%) in each blend system (MG1, MG2, MG3, and MG4). 

Figure 10 shows the summary of total weight losses after the complete thermal anal-

ysis of all the blend compositions for each MgO waste blend system, which were obtained 

from the TG/DTG plots in Figures 6–9. This is one of the optimization design criteria for 

choosing the best performing binder system. The largest weight loss was experienced by 

MG3 blend system with 90, 80, and 70 wt.% MgO content within the range of 24–31% 

while the lowest weight loss was experienced by the control (3.2%). However, blend com-

positions within the MG2 blend system produced the lowest weight losses within the 

range of 6–7%. With respect to each individual binder material (MG1, MG2, MG3, MG4, 

and GGBS), Figures 6–9 shows that only GGBS was considerably stable (1.6%), while other 

material components experienced a significant individual weight loss of 7.7% (MG2), 

13.8% (MG4), 20% (MG1), and 34% (MG3), respectively. 
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Figure 10. Weight loss (%) due to thermal analysis for blended mixtures. 

3.3. Isothermal Calorimetric Analysis 

Figures 11 and 12 show a summary of the evolution of the first and second thermal 

peaks that were obtained from the calorimetric plots in Figures 13–16 for the various hy-

drated blend systems after 72 h at 25 °C. A significant evolution of thermal powers was 

evident in the first peak (18–184 J/gh) for all the investigated blend systems in comparison 

with thermal powers produced in the second peak (0–32 J/gh). The blend compositions 

within the MG4 blend system produced the largest intensity of first thermal powers 

within the range of 153–184 J/gh, while those from MG3 blend systems produced the low-

est first thermal powers within the range of 18.2–21.8 J/gh. Another obvious observation 

was the gradual reduction in the production of thermal power for every percentage re-

duction in in the quantity of MgO content (90, 80, and 70 wt.%) for all the MgO waste 

materials (MG1, MG2, MG3, and MG4). The magnitude of thermal powers that were pro-

duced in the second peaks within the MG1 systems, were significantly higher and about 

48–60% higher than the Control. The reverse was the case for the mix compositions pro-

duced from other blend systems (MG2, MG3, and MG4 systems), as their thermal powers 

were considerably lower (0–56%) than the control. 
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Figure 11. Calorimetric 1st thermal power for hydrated blended mixtures after 72 h at 25 °C. 

 

Figure 12. Calorimetric 2nd thermal power for hydrated blended mixtures after 72 h at 25 °C. 
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Figure 13. Calorimetric curves for blended mixtures in MG1 blend system after hydration at 25 °C. 

 

Figure 14. Calorimetric curves for blended mixtures in MG2 blend system after hydration at 25 °C. 
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Figure 15. Calorimetric curves for blended mixtures in MG3 blend system after hydration at 25 °C. 

 

Figure 16. Calorimetric curves for blended mixtures in MG4 blend system after hydration at 25 °C. 

Figure 17 shows the calorimetric heat of hydration (HOH) peaks for the hydrated 

mix compositions, which were obtained from the calorimetric plots in Figure 18. Regard-

ing the blend systems, the mix compositions that were produced from the MG1 systems 

produced the largest magnitude of HOH within the range of 191.2–255.3 J/g, while MG3 

systems produced the lowest HOH of 42.1–64.6 J/g. A continuous trend of an increase in 

the production of calorimetric HOH was evident for all the hydrated mix blends. Alt-

hough the control mix composition (100 wt.% CEM I) produced the maximum HOH value 

of 339.5 J/g, all other blend systems (MG1, MG2, MG3, and MG3) showed potential for 

more production of HOH. 
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Figure 17. Calorimetric heat of hydration peaks for hydrated blended mixtures after 72 h at 25 °C. 

 

Figure 18. Calorimetric heat of hydration curves for hydrated blended mixtures after 72 h at 25 °C. 

4. Discussion 

4.1. pH Investigation 

pH or “potential for hydrogen” analysis is a vital parameter used within soil science 

to properly characterise and understand the activation levels of binder materials. It uti-

lizes a quantitative analysis to measure the acidity or basicity/alkalinity of aqueous solu-

tions, which essentially translates to the inherent amount of hydrogen ion/activity. The 
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observed variation in pH for the blend compositions in MG1 blend system could be due 

to the low pH value of the individual MG1 waste materials, which influenced the overall 

pH value of each MgO:GGBS blend composition. The trend observed for MG2 and MG4 

blend systems of no significant change in pH value could be attributed to the high indi-

vidual pH for MG2 (12.04) and MG4 (12.95) compared with GGBS (10.20), which is sug-

gested to have largely influenced the combined pH of each MgO:GGBS blend. Generally, 

the reduced pH value for the MgO waste blend systems shows a positive impact of its 

application as it could lead to low solubility of heavy metals within the waste materials 

(MgO wastes), which eliminates contamination of the environment through leaching of 

the cementitious binders within a stabilised product [35]. 

Generally, the low-pH values that were established for the MgO wastes (MG1, MG2, 

MG3, and MG4) compared with the control give an indication of a good binder/alkaline 

earth metals in acting as an activator to industrial by-products (GGBS). The alkalinity lev-

els raised the pH of the initial hydration reaction, which is required to break the silicon 

dioxide bonds and facilitate a reaction to form a condensed structure [36]. In addition, this 

is a good attribute (low pH) for a binder system, to easily flocculate cations within the 

interlayer of a clay structure and improved overall binder–clay compatibility [37]. 

4.2. Thermal Investigation 

The thermal performance of cement and cementitious systems is a key requirement 

for understanding their behaviour after undergoing a TG/DTG analysis, which primarily 

measures the change in weight (individual and total weight loss), identifies various hy-

dration phases (endothermic peaks), and provides an indication to the thermal stability 

(dehydroxylation, decarbonation, dehydration, decomposition, melting of phase transi-

tion) of the investigated blend compositions [20]. A summary of the identified cementi-

tious phases in the investigated un-hydrated MgO blend systems are shown in Table 4. 

This was based on the decomposition of the expected crystalline/amorphous hydration 

phases from the existing literature. Generally, the observed weight losses between tem-

perature peaks of 0 and 600 °C are attributed to water loss, while those above 600 °C are 

primarily associated with the release of carbon dioxide or decarboxylation [20]. The ce-

mentitious phases at varying peak points (temperature) are suggested as brucite, gypsum 

(dihydrate and anhydrite phase), magnesium silicate hydrate (M-S-H) gel, calcium silicate 

hydrate (C-S-H) gel, calcium hydroxide, calcium carbonate (calcite), magnesite, and hy-

drotalcite [20,38,39]. 

The endothermic peak points 1 for blend systems MG1, MG2, and MG3 at 101–105 

°C in this study is in line with the findings of Sonat and Unluer [7], who attributed the 

water loss to the dehydration of loose or poorly bound hydroxyl groups within the ele-

ment structure. Klein and Hurlbut [40] reported that gypsum is composed of parallel lay-

ers of (SO4)2+ groups in its structure that are strongly bonded to (Ca2+) while the parallel 

layers are bound together by weak water molecules. This explains the decomposition of 

gypsum at different forms of calcium sulphate dihydrate (CaSO4·2H2O) to calcium sul-

phate anhydrite (CaSO4) between 85 to 400 °C [38,39,41], which is in line with the observed 

endothermic peaks at location 1 and 2 for MG4 blend system at 105 to 371 °C. The observed 

peak attributed to the formation of brucite (Mg(OH)2) was mainly due to the hydration of 

magnesium oxide and in the context of thermal analysis, and it occurs when there is the 

development of a peak within the temperature range of 300 to 450 °C [7]. Bernard et al. 

[35] attributed this peak as the dihydroxylation of magnesium hydroxyl groups (Mg-OH) 

present within the blend mixtures. The presence of brucite also gives a positive indication 

of the potential for the formation of cementitious hydrates (M-S-H gel or hydrotalcite) 

from the investigated alternative binder system [42,43]. With reference to other identified 

hydrated cementitious phases, calcium carbonate decomposed further at high tempera-

tures between 642–782 °C for the analysed blended mixtures (Table 4). This is in line with 

the findings of Song et al. [44] and Collier [39] on the temperature ranges of 650–740, 600–
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800, and 650–900 °C, respectively, for a complete decomposition of calcium to form cal-

cium carbonate (calcite). This later-stage decomposition can also be attributed to a carbon-

ation effect with respect to the decomposition of calcite present within the blend compo-

sitions [45]. 

Table 4. Identification and comparison of hydrated cementitious phases for blended mixtures. 

Blend Sys-

tems 

Hydrated Cementitious Phases 

Loose Water (H2O) 
Gypsum (CaSO4.2H2O-

CaSO4) 
Brucite (Mg(OH)2) Magnesite (MgCO3) 

Calcium Carbonate 

(CaCO3) 

Peak Loca-

tion 

Temp. 

(°C) 

Peak Loca-

tion 
Temp. (°C) 

Peak Loca-

tion 

Temp. 

(°C) 

Peak Loca-

tion 
Temp. °C) 

Peak Loca-

tion 
Temp. (°C) 

MG1 1 105 - - 2 371 3 537 4 737 

MG2 1 103 - - 2 360 - - 3 709 

MG3 1 101 - - 2 401 3 658 4 782 

MG4 - - 1,2 105 - 371 3 446 - - 4 703 

The weight loss that was observed is one of the vital parameters for the current binder 

optimisation process so that the successful binder system will not have a negative impact 

(shrinkage tendency) on the overall stability of the blend compositions and robustness of 

the stabilised product that it was applied to. A possible justification for this individual 

weight loss could be due to the high amount of loss of ignition of carbon compounds for 

each MgO waste material (L.O.I from XRF analysis detailing the material oxide composi-

tions in Table 1). In addition, the reduction in the magnitude of endothermic peaks for the 

blend compositions in each blend system (Figure 10) could be attributed to the increased 

amount of GGBS content in each mix composition with every gradual reduction in the 

quantity of MgO waste (90, 80, and 70 wt.%), which possesses stronger crystalline bonds 

within its molecular structure compared with the binder materials (MgO). Another possi-

ble justification could also be attributed to the strength capacity of bonds between the 

structural layer and hydroxyl group of the hydrated cementitious compound in the blend 

composition (brucite) [35,44]. 

4.3. Isothermal Calorimetric Investigation 

The hydration reaction for hydrated blended mixtures with MgO can be explained 

using the simple hydration kinetics reaction, as a function of the generated thermal power 

(J/gh) and heat of hydration (J/g) [18]. Generally, the activation process of GGBS by reac-

tive MgO begins with an initial destruction of the bonds within the GGBS composition 

e.g., Mg–O, Ca–O, Si–O–Si, Al–O–Si, and Al–O–Al, which is subsequently followed by the 

development of a Si–Al inter-surface layer over the grains of the GGBS material. Thereaf-

ter, Mg2+ either reacts with Si–O or Al–O to produce a cementing hydrate mainly as C-S-

H gel and M-S-H gel or hydrotalcite/magnesium aluminate hydrate—M-A-H [5,15,46]. 

Therefore, an overall hydration reaction for a MgO-waste-activated GGBS composition 

can be summarized in Equation (1). 

MgO + (CaO − MgO − Al�O� − SiO�) GGBS + H�O

→ C − S − H + M − S − H + M − A − H(Ht) + C − A − S − H 
(1)

The rapid increase in thermal production (1st peak) at the initial reaction stages for 

all the analysed MgO-waste:GGBS blended mixtures can be attributed to the combined 

exothermic reaction experienced during the hydration of calcium oxide (CaO) and mag-

nesium oxide (MgO) present within their individual composition. This is in line with the 

research by Amaral et al. [47], who suggested that Mg2+ cations and anions (Cl- and SO42+) 

have an effect on the thermodynamics and kinetics of a hydration reaction. Therefore, the 

heat that was experienced with respect to MgO-waste blended mixtures results from the 
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hydration of MgO (Equation (2)), which readily dissolves upon contact with water to 

mostly form brucite [48,49]. 

��� + ��� ⇌ ��(��)�, Δ� = −81.02 kJ mol�� (2)

The extent of thermal power production in the MgO waste:GGBS and CEM I binder 

systems largely depends on the combined effects of heat production from the CaO and 

MgO with its associated CaO in the GGBS content. Therefore, the combined presence of 

CaO within MgO:GGBS composition gives rise to the presence of an increased amount of 

tricalcium aluminate (C3A), which is responsible for the initial reaction stage [21,50–52]. 

Some researchers also suggested that the initial sudden thermal power production can 

also be caused by ettringite formation, due to the hydration reaction that occurs during 

the complete decomposition of gypsum present within the developed blended mixtures 

from calcium sulphate hemihydrate (CaSO4·1/2H2O) to calcium sulphate dihydrate 

(CaSO4·2H2O) phase [53]. This phenomenon well explains the high initial thermal peak 

that was observed for blended mixtures with MG4, which is composed of high levels of 

sulfur trioxide (SO3) in comparison with the control and other MgO waste materials (see 

Table 1). 

The gradual reduction in the first thermal peaks (thermal power generation) for every 

percentage increase in replacement levels of PC with MgO waste materials in all the blend 

systems could be attributed to the large replacement levels of PC (70, 80, and 90 wt.%), 

which is expected to increase the amount of CaO that is responsible for the initial exother-

mic reaction resulting in the formation of ettringite, cracks, false strength, and flash setting 

of the hydrated product [21]. This reduction phenomenon could also be attributed to the 

reduction in the amount of MgO present within the blended mixtures. This is in line with 

the research by Amaral et al. [47] who suggested that Mg2+ cations and anions (Cl- and 

SO42+) have an effect on the thermodynamics and kinetics of a hydration reaction. All the 

blend mixtures experienced an induction period that is more pronounced in MG1 and 

MG3 binder systems (Figures 13–16) in which the duration was largely dependent on each 

material of the blended mixture and binder system. Taylor et al. [54] attributed this occur-

rence that varies across the blended material as a period of slow hydration reaction with 

a low production of thermal power, where the protective layer that was developed over 

the particles of the tricalcium silicate (C3S) in the initial exothermic/hydration reaction was 

later destroyed by either phase formation, pH, amount of Ca2+, or ageing (Figure 19). Ad-

ditionally, the duration of induction period varies across the blended material. It is worth 

knowing that the occurrence of the second exothermic peaks was mainly due to the fur-

ther hydration reaction of the released C3S after the initial reaction and induction stage, 

resulting in the production of more exothermic thermal powers for increased hydration 

[21]. However, the produced peak and time for complete hydration is material-dependent. 

 

Figure 19. Schematic representation of a hydrating C3S (alite) grain [55]. 
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A continuous period of slow reaction was observed after the second thermal power 

peak for all the blended mixtures (Figures 13–16). This was where the produced thermal 

powers began to level off with further hydration reaction between MgO and the silica/alu-

mina present within the blended mixture composition. The further hydration reaction was 

quite slow for all the blend systems and can be attributed to the high magnesium oxide 

content (Mg2+ cations and anions), which possesses a retarding effect on the thermody-

namics and kinetics of the hydration reaction [47]. 

Generally, the continuous trend of increase in the production of calorimetric HOH 

for the MgO waste:GGBS blends as a result of increased hydration could be attributed to 

the presence of pozzolanic materials within their compositions, which is responsible for 

the generation of more HOH at later stages [18]. In addition, this phenomenon could be 

attributed to the fine particles of GGBS that are required for accelerated hydration reaction 

kinetics by MgO to create more heterogeneous nucleation sites and continuous produc-

tion of the hydration compound—M-S-H gel [56]. The maximum HOH experienced by 

blended mixtures with MG1 could be a result of the high reactivity levels of MG1 (type of 

MgO) used compared to others. However, the fall in calorimetric HOH that was experi-

enced by some of the blended mixtures could be the exhaustion of the activator present 

within the mixture for continuous hydration reaction process and the reduced amount of 

water present within the mix, resulting in delayed hydration reaction kinetics [57]. Hence, 

the mix compositions within the MG1 and MG2 binder system exhibited potential for in-

creased generation of HOH due to the superior performance from other identified blend 

system (MG3 and MG4). 

5. Conclusions 

The current study investigated the application of a sustainable and economically vi-

able thermo-chemical approach using a set of experimental regimes as a tool for binder 

system optimization. This approach enabled a quick determination of the best performing 

binder systems before any civil engineering application (soil stabilisation, mortar, con-

crete, etc.). Therefore, the following conclusions can be drawn based on the outcomes of 

the study: 

1. The thermochemical optimisation approach revealed the potentials of MgO waste 

materials to effectively replace PC up to 90 wt.% within a MgO-GGBS cementitious 

system and can describe the chemical and thermal performance of the investigated 

MgO:GGBS compositions with a set design criteria well. 

2. MG1 binder systems were established as the best-performing binder system based 

on the superior performance of its mix compositions with respect to the set criteria 

(low pH, increased levels of heat of hydration, and considerable thermal stability 

(weight loss) after thermal exposure). 

3. The thermal investigation (TG/DTG analysis) established that blend compositions 

within the MG1 binder system developed the necessary cementitious endothermic 

peaks (loose water, gypsum, brucite, magnesite, and calcite) and demonstrated satis-

factory thermal stability that will be beneficial when employed for practical applica-

tions (pavement subgrade) in regions with high temperature. 

4. The reduction in the evolution of the first exothermic peak immediately after the 

commencement of the initial hydration reaction of the various MgO:GGBS formula-

tions except MG4 blend systems shows their potential for the reduction of the pro-

duction of initial ettringite formation, cracking, false strength, and flash setting of the 

hydrated blend system attributed to the first exothermic peak for in situ applications 

(mortar, concrete, soil stabilization, etc.). 

5. The MgO:GGBS blends resulted in reduced pH levels compared with the control due 

to the reduced individual pH levels of the blend components (MgO and GGBS). 

However, MG4 with high sulphate contents and some levels of Ca could not be used 
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in stabilising soils with sulphate contents due to the potential of forming the hydra-

tion compound (ettringite), which upon further hydration could result in swelling of 

the stabilised product. 

Further experimental investigations are suggested for binder optimisation purposes, 

which could further reduce the scope of the experimental regime, give more insight into 

the chemical performance of the investigated material, and produce a rapid delivery of 

cementitious binder optimisation results. However, the main limitation to this thermo-

chemical approach is largely due to human expertise at carrying out the various experi-

mental tests and the surrounding temperature that could impact on the thermodynamics 

of the hydration reaction in the isothermal calorimetric analysis. 
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