47 research outputs found

    Foraminal Ligaments Tether Upper Cervical Nerve Roots: A Potential Cause of Postoperative C5 Palsy.

    Get PDF
    Background Nerve root tethering upon dorsal spinal cord (SC) migration has been proposed as a potential mechanism for postoperative C5 palsy (C5P). To our knowledge, this is the first study to investigate this relationship by anatomically comparing C5-C6 nerve root translation before and after root untethering by cutting the cervical foraminal ligaments (FL). Objective The aim of this study is to determine if C5 root untethering through FL cutting results in increased root translation. Methods Six cadaveric dissections were performed. Nerve roots were exposed via C4-C6 corpectomies and supraclavicular brachial plexus exposure. Pins were inserted into the C5-C6 roots and adjacent foraminal tubercle. Translation was measured as the distance between pins after the SC was dorsally displaced 5 mm before and after FL cutting. Clinical feasibility of FL release was examined by comparing root translation between standard and extended (complete foraminal decompression) foraminotomies. Translation of root levels before and after FL cutting was compared by two-way repeated measures analysis of variance. Statistical significance was set at 0.05. Results Significantly more nerve root translation was observed if the FL was cut versus not-cut, p = 0.001; no difference was seen between levels, p = 0.33. Performing an extended cervical foraminotomy was technically feasible allowing complete FL release and root untethering, whereas a standard foraminotomy did not. Conclusion FL tether upper cervical nerve roots in their foramina; cutting these ligaments untethers the root and increases translation suggesting they could be harmful in the context of C5P. Further investigation is required examining the value of root untethering in the context of C5P

    LAT1 Protein Content Increases Following 12 Weeks of Resistance Exercise Training in Human Skeletal Muscle

    Get PDF
    Introduction: Amino acid transporters are essential for cellular amino acid transport and promoting protein synthesis. While previous literature has demonstrated the association of amino acid transporters and protein synthesis following acute resistance exercise and amino acid supplementation, the chronic effect of resistance exercise and supplementation on amino acid transporters is unknown. The purpose herein was to determine if amino acid transporters and amino acid metabolic enzymes were related to skeletal muscle hypertrophy following resistance exercise training with different nutritional supplementation strategies. Methods: 43 college-aged males were separated into a maltodextrin placebo (PLA, n = 12), leucine (LEU, n = 14), or whey protein concentrate (WPC, n = 17) group and underwent 12 weeks of total-body resistance exercise training. Each group\u27s supplement was standardized for total energy and fat, and LEU and WPC supplements were standardized for total leucine (6 g/d). Skeletal muscle biopsies were obtained prior to training and ~72 h following each subject\u27s last training session. Results: All groups increased type I and II fiber cross-sectional area (fCSA) following training (p \u3c 0.050). LAT1 protein increased following training (p \u3c 0.001) and increased more in PLA than LEU and WPC (p \u3c 0.050). BCKDHα protein increased and ATF4 protein decreased following training (p \u3c 0.001). Immunohistochemistry indicated total LAT1/fiber, but not membrane LAT1/fiber, increased with training (p = 0.003). Utilizing all groups, the change in ATF4 protein, but no other marker, trended to correlate with the change in fCSA (r = 0.314; p = 0.055); however, when regression analysis was used to delineate groups, the change in ATF4 protein best predicted the change in fCSA only in LEU (r2 = 0.322; p = 0.043). In C2C12 myoblasts, LAT1 protein overexpression caused a paradoxical decrease in protein synthesis levels (p = 0.002) and decrease in BCKDHα protein (p = 0.001). Conclusions: Amino acid transporters and metabolic enzymes are affected by resistance exercise training, but do not appear to dictate muscle fiber hypertrophy. In fact, overexpression of LAT1 in vitro decreased protein synthesis

    Pre-training Skeletal Muscle Fiber Size and Predominant Fiber Type Best Predict Hypertrophic Responses to 6 Weeks of Resistance Training in Previously Trained Young Men

    Get PDF
    Limited evidence exists regarding differentially expressed biomarkers between previously-trained low versus high hypertrophic responders in response to resistance training. Herein, 30 college-aged males (training age 5 ± 3 years; mean ± SD) partook in 6 weeks of high-volume resistance training. Body composition, right leg vastus lateralis (VL) biopsies, and blood were obtained prior to training (PRE) and at the 3-week (W3) and 6-week time points (W6). The 10 lowest (LOW) and 10 highest (HIGH) hypertrophic responders were clustered based upon a composite hypertrophy score of PRE-to-W6 changes in right leg VL mean muscle fiber cross-sectional area (fCSA), VL thickness assessed via ultrasound, upper right leg lean soft tissue mass assessed via dual x-ray absorptiometry (DXA), and mid-thigh circumference. Two-way ANOVAs were used to compare biomarker differences between the LOW and HIGH clusters over time, and stepwise linear regression was performed to elucidate biomarkers that explained significant variation in the composite hypertrophy score from PRE to W3, W3 to W6, and PRE to W6 in all 30 participants. PRE-to-W6 HIGH and LOW responders exhibited a composite hypertrophy change of +10.7 ± 3.2 and -2.1 ± 1.6%, respectively (p < 0.001). Compared to HIGH responders, LOW responders exhibited greater PRE type II fCSA (+18%, p = 0.022). Time effects (p < 0.05) existed for total RNA/mg muscle (W6 > W3 > PRE), phospho (p)-4EBP1 (PRE > W3&W6), pan-mTOR (PRE > W3 < W6), p-mTOR (PRE > W3 < W6), pan-AMPKα (PRE > W3 < W6), pan-p70s6k (PRE > W3), muscle ubiquitin-labeled proteins (PRE > W6), mechano growth factor mRNA (W6 > W3&PRE), 45S rRNA (PRE > W6), and muscle citrate synthase activity (PRE > W3&W6). No interactions existed for the aforementioned biomarkers and/or other assayed targets (muscle 20S proteasome activity, serum total testosterone, muscle androgen receptor protein levels, muscle glycogen, or serum creatine kinase). Regression analysis indicated PRE type II fiber percentage (R2 = 0.152, ÎČ = 0.390, p = 0.033) and PRE type II fCSA (R2 = 0.207, ÎČ = -0.455, p = 0.019) best predicted the PRE-to-W6 change in the composite hypertrophy score. While our sample size is limited, these data suggest: (a) HIGH responders may exhibit more growth potential given that they possessed lower PRE type II fCSA values and (b) possessing a greater type II fiber percentage as a trained individual may be advantageous for hypertrophy in response to resistance training

    Novel Titanium Cages for Minimally Invasive Lateral Lumbar Interbody Fusion: First Assessment of Subsidence

    No full text
    Introduction: Implant subsidence is a potential complication of spinal interbody fusion and may negatively affect patients subjected to procedures relying on indirect decompression such as minimally invasive transpsoas lateral lumbar interbody fusion (LLIF). The porous architecture of a recently developed titanium intervertebral cage maximizes bone-to-implant contact and minimizes stress shielding in laboratory experiments; however, its subsidence rate in patients has not yet been evaluated. The goal of this current study was to evaluate implant subsidence in patients subjected to LLIF. Methods: Our institutional review board-approved single-center experience included 29 patients who underwent 30 minimally invasive LLIF from July 2017 to September 2018 utilizing the novel 3D-printed porous titanium implants. Radiographs, obtained during routine postoperative follow-up visits, were reviewed for signs of implant subsidence, defined as any appreciable compromise of the vertebral endplates. Results: Radiographic subsidence occurred in 2 cases (6.7%), involving 2 out of 59 porous titanium interbody cages (3.4%). Both cases of subsidence occurred in four-level stand-alone constructs. The patients remained asymptomatic and did not require surgical revision. Ten surgeries were stand-alone constructs, and 20 surgeries included supplemental posterior fixation. Conclusions: In our patient cohort, subsidence of the porous titanium intervertebral cage occurred in 6.7% of all cases and in 3.4% of all lumbar levels. This subsidence rate is lower compared to previously reported subsidence rates in patients subjected to LLIF using polyetheretherketone implants

    Novel Titanium Cages for Minimally Invasive Lateral Lumbar Interbody Fusion: First Assessment of Subsidence

    No full text
    Introduction: Implant subsidence is a potential complication of spinal interbody fusion and may negatively affect patients subjected to procedures relying on indirect decompression such as minimally invasive transpsoas lateral lumbar interbody fusion (LLIF). The porous architecture of a recently developed titanium intervertebral cage maximizes bone-to-implant contact and minimizes stress shielding in laboratory experiments; however, its subsidence rate in patients has not yet been evaluated. The goal of this current study was to evaluate implant subsidence in patients subjected to LLIF. Methods: Our institutional review board-approved single-center experience included 29 patients who underwent 30 minimally invasive LLIF from July 2017 to September 2018 utilizing the novel 3D-printed porous titanium implants. Radiographs, obtained during routine postoperative follow-up visits, were reviewed for signs of implant subsidence, defined as any appreciable compromise of the vertebral endplates. Results: Radiographic subsidence occurred in 2 cases (6.7%), involving 2 out of 59 porous titanium interbody cages (3.4%). Both cases of subsidence occurred in four-level stand-alone constructs. The patients remained asymptomatic and did not require surgical revision. Ten surgeries were stand-alone constructs, and 20 surgeries included supplemental posterior fixation. Conclusions: In our patient cohort, subsidence of the porous titanium intervertebral cage occurred in 6.7% of all cases and in 3.4% of all lumbar levels. This subsidence rate is lower compared to previously reported subsidence rates in patients subjected to LLIF using polyetheretherketone implants

    The effects of salinity and N : P on N‐rich toxins by both an N‐fixing and non‐N‐fixing cyanobacteria

    No full text
    Abstract Freshwater ecosystems are experiencing increased salinization. Adaptive management of harmful algal blooms (HABs) contributes to eutrophication/salinization interactions through the hydrologic transport of blooms to coastal environments. We examined how nutrients and salinity interact to affect growth, elemental composition, and cyanotoxin production/release in two common HAB genera. Microcystis aeruginosa (non‐nitrogen [N]‐fixer and microcystin‐LR producer [MC‐LR]) and Aphanizomenon flos‐aquae (N‐fixer and cylindrospermopsin producer [CYN]) were grown in N : phosphorus (N : P) 4 and 50 (by atom) for 21 and 33 d, respectively, then dosed with a salinity gradient (0–10.5 g L−1). Both total MC‐LR and CYN were correlated with particulate N. We found Microcystis MC‐LR production and release was affected by salinity only in the N : P 50 treatment. However, Aphanizomenon CYN production and release was affected by salinity regardless of N availability. Our results highlight how cyanotoxin production and release across the freshwater–marine continuum are controlled by ecophysiological differences between N‐acquisition traits

    Cylindrospermopsin is regulated by resource stoichiometry in the cyanobacterium, Aphanizomenon

    No full text
    While all the drivers of HAB formation are not well understood, eutrophic conditions increase the likelihood of HABs. Cyanotoxins are classified as nitrogen (N)-rich or carbon (C)-rich, with the Redfield ratio (C:N 6.6) separating the two classes. The stoichiometric hypothesis of toxin production states that conditions that cause N to be in excess [e.g., high N:phosphorus (N:P)] will cause increased N-rich cyanotoxin production. This hypothesis is supported in Microcystis with microcystin production; however, other cyanotoxins and cyanobacteria remain poorly understood. Here, we explored how a gradient of N:P affects the biomass, elemental stoichiometry, light-harvesting pigments, and cylindrospermopsin (CYN) concentration and cell quotas in an N-fixing cyanobacterium, Aphanizomenon. We found that cultures grown in low N:P conditions produced the same biomass, implying a high N-fixation efficiency that did not cause an N-fixation growth tradeoff. Even with no changes in biomass CYN concentrations increased over the N:P 1 to 100 gradient. The proportion of dissolved CYN increased with resource N:P that ranged between 0 and 75% of the CYN concentration. Our results enforce the need to control both N and P to lower the N:P in receiving waters that may decrease the potential for cyanobacteria to produce intracellular and extracellular toxins

    Report on the American

    No full text
    T his is the fourth Report on the American Workforce to be issued by the Department of Labor. The three themes covered in this edition—workplace responses to an increasingly competitive global environment, the central role of improved skills for all participants in the labor market, and the balance of work and family—will be central concerns for policymakers, researchers, and American workers and their families well into the 21 st century. The Report’s basic direction and context is established in an introductory message from the Secretary of Labor. Each of the three subsequent chapters investigates one of the analytical topics. An updated compendium of statistical tables completes the volume. The completed Report as it appears here reflects the work of many people—economists, statisticians, data development experts, editors, visual information specialists, computer programmers, and others. Katharine G. Abraham, Commissioner for the Bureau of Labor Statistics, established the strategic direction of this series of reports. Deborah Klein and Richard Devens provided overall direction for this year’s report. Information in this report is available to sensory impaired individuals on request. Voic

    Foraminal Ligaments Tether Upper Cervical Nerve Roots: A Potential Cause of Postoperative C5 Palsy

    No full text
    Background: Nerve root tethering upon dorsal spinal cord (SC) migration has been proposed as a potential mechanism for postoperative C5 palsy (C5P). To our knowledge, this is the first study to investigate this relationship by anatomically comparing C5–C6 nerve root translation before and after root untethering by cutting the cervical foraminal ligaments (FL). Objective: The aim of this study is to determine if C5 root untethering through FL cutting results in increased root translation. Methods: Six cadaveric dissections were performed. Nerve roots were exposed via C4–C6 corpectomies and supraclavicular brachial plexus exposure. Pins were inserted into the C5–C6 roots and adjacent foraminal tubercle. Translation was measured as the distance between pins after the SC was dorsally displaced 5 mm before and after FL cutting. Clinical feasibility of FL release was examined by comparing root translation between standard and extended (complete foraminal decompression) foraminotomies. Translation of root levels before and after FL cutting was compared by two-way repeated measures analysis of variance. Statistical significance was set at 0.05. Results: Significantly more nerve root translation was observed if the FL was cut versus not-cut, p = 0.001; no difference was seen between levels, p = 0.33. Performing an extended cervical foraminotomy was technically feasible allowing complete FL release and root untethering, whereas a standard foraminotomy did not. Conclusion: FL tether upper cervical nerve roots in their foramina; cutting these ligaments untethers the root and increases translation suggesting they could be harmful in the context of C5P. Further investigation is required examining the value of root untethering in the context of C5P
    corecore