69 research outputs found

    The structure of a protein primer-polymerase complex in the initiation of genome replication

    Get PDF
    Picornavirus RNA replication is initiated by the covalent attachment of a UMP molecule to the hydroxyl group of a tyrosine in the terminal protein VPg. This reaction is carried out by the viral RNA-dependent RNA polymerase (3D). Here, we report the X-ray structure of two complexes between foot-and-mouth disease virus 3D, VPg1, the substrate UTP and divalent cations, in the absence and in the presence of an oligoadenylate of 10 residues. In both complexes, VPg fits the RNA binding cleft of the polymerase and projects the key residue Tyr3 into the active site of 3D. This is achieved by multiple interactions with residues of motif F and helix α8 of the fingers domain and helix α13 of the thumb domain of the polymerase. The complex obtained in the presence of the oligoadenylate showed the product of the VPg uridylylation (VPg-UMP). Two metal ions and the catalytic aspartic acids of the polymerase active site, together with the basic residues of motif F, have been identified as participating in the priming reaction. © 2006 European Molecular Biology Organization | All Rights Reserved.Work in Barcelona was supported by Grants BIO2002-00517 and BFU2005-02376/BMC. Work in Madrid by Grants BMC 2001.1823.C02-01, BFU2005-00863/BMC and Fundación R Areces. CF and AA were supported by I3P fellowships from Ministerio de Educación y Ciencia. RA was supported by an FPI fellowship from Comunidad de Madrid. The financial support was provided by the ESRFPeer Reviewe

    A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape

    Get PDF
    Resistance of viruses to mutagenic agents is an important problem for the development of lethal mutagenesis as an antiviral strategy. Previous studies with RNA viruses have documented that resistance to the mutagenic nucleoside analogue ribavirin (1-β-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is mediated by amino acid substitutions in the viral polymerase that either increase the general template copying fidelity of the enzyme or decrease the incorporation of ribavirin into RNA. Here we describe experiments that show that replication of the important picornavirus pathogen foot-and-mouth disease virus (FMDV) in the presence of increasing concentrations of ribavirin results in the sequential incorporation of three amino acid substitutions (M296I, P44S and P169S) in the viral polymerase (3D). The main biological effect of these substitutions is to attenuate the consequences of the mutagenic activity of ribavirin —by avoiding the biased repertoire of transition mutations produced by this purine analogue—and to maintain the replicative fitness of the virus which is able to escape extinction by ribavirin. This is achieved through alteration of the pairing behavior of ribavirin-triphosphate (RTP), as evidenced by in vitro polymerization assays with purified mutant 3Ds. Comparison of the three-dimensional structure of wild type and mutant polymerases suggests that the amino acid substitutions alter the position of the template RNA in the entry channel of the enzyme, thereby affecting nucleotide recognition. The results provide evidence of a new mechanism of resistance to a mutagenic nucleoside analogue which allows the virus to maintain a balance among mutation types introduced into progeny genomes during replication under strong mutagenic pressure

    Counteracting Quasispecies Adaptability: Extinction of a Ribavirin-Resistant Virus Mutant by an Alternative Mutagenic Treatment

    Get PDF
    [Background] Lethal mutagenesis, or virus extinction promoted by mutagen-induced elevation of mutation rates of viruses, may meet with the problem of selection of mutagen-resistant variants, as extensively documented for standard, nonmutagenic antiviral inhibitors. Previously, we characterized a mutant of foot-and-mouth disease virus that included in its RNA-dependent RNA polymerase replacement M296I that decreased the sensitivity of the virus to the mutagenic nucleoside analogue ribavirin.[Methodology and Principal Findings] Replacement M296I in the viral polymerase impedes the extinction of the mutant foot-and-mouth disease virus by elevated concentrations of ribavirin. In contrast, wild type virus was extinguished by the same ribavirin treatment and, interestingly, no mutants resistant to ribavirin were selected from the wild type populations. Decreases of infectivity and viral load of the ribavirin-resistant M296I mutant were attained with a combination of the mutagen 5-fluorouracil and the non-mutagenic inhibitor guanidine hydrocloride. However, extinction was achieved with a sequential treatment, first with ribavirin, and then with a minimal dose of 5-fluorouracil in combination with guanidine hydrochloride. Both, wild type and ribavirin-resistant mutant M296I exhibited equal sensitivity to this combination, indicating that replacement M296I in the polymerase did not confer a significant cross-resistance to 5-fluorouracil. We discuss these results in relation to antiviral designs based on lethal mutagenesis[Conclusions] (i) When dominant in the population, a mutation that confers partial resistance to a mutagenic agent can jeopardize virus extinction by elevated doses of the same mutagen. (ii) A wild type virus, subjected to identical high mutagenic treatment, need not select a mutagen-resistant variant, and the population can be extinguished. (iii) Extinction of the mutagen-resistant variant can be achieved by a sequential treatment of a high dose of the same mutagen, followed by a combination of another mutagen with an antiviral inhibitor.Work supported by grants BFU2005-00863, BFU2008-02816/BMC, Proyecto Intramural de Frontera del CSIC 200820FO191, FIPSE 36558/06, and Fundacio´n Ramo´n Areces. CIBERehd is funded by Instituto de Salud Carlos III. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriptPeer reviewe

    Amino acid substitutions associated with treatment failure of hepatitis C virus infection

    Get PDF
    Trabajo presentado en el XVI Congreso Nacional de Virología, celebrado en Málaga (España) del 06 al 09 de septiembre de 2022.Despite the high sustained virological response rates achieved with current directly-acting antiviral agents (DAAs) against hepatitis C virus (HCV), around 2% to 5% of patients do not achieve such a response. Identification of amino acid substitutions associated with treatment failure requires analytical designs, such as subtype-specific ultra-deep sequencing (UDS) methods for HCV characterization and patient management. By deep sequencing analysis of 220 subtyped HCV samples from infected patients who failed therapy, collected from 39 Spanish hospitals, we determined amino acid sequences of the DAA-target proteins NS3, NS5A and NS5B, by UDS of HCV patient samples, in search of resistanceassociated substitutions (RAS). Using this procedure, we have identified six highly represented amino acid substitutions (HRSs) in NS5A and NS5B of HCV, which are not bona fide RAS. They were present frequently in basal and post-treatment virus of patients who failed therapy to different DAA-based therapies. Contrary to several RAS, HRSs belong to the acceptable subset of substitutions according to the PAM250 replacement matrix. Coherently, their mutant frequency, measured by the number of deep sequencing reads within the HCV quasispecies that encode the relevant substitutions, ranged between 90% and 100% in most cases. Also, they have limited predicted disruptive effects on the threedimensional structures of the proteins harboring them. The information on HRSs that will be gathered during sequencing should be relevant not only to help predict treatment outcomes and disease progression but also to further understand HCV population dynamics, which appears much more complex than thought prior to the introduction of deep sequencing.The work at CBMSO was supported by grants SAF2014-52400-R from MINECO, SAF2017-87846-R and BFU2017-91384-EXP MICIU, PI18/00210 from ISCIII, S2013/ABI-2906 (PLATESA) and S2018/BAA-4370 (PLATESA2) from Comunidad de Madrid/FEDER. C.P. is supported by the Miguel Servet program of the ISCIII (CP14/00121 and CPII19/00001), cofinanced by the European Regional Development Fund (ERDF). CIBERehd is funded by ISCIII. Institutional grants from the Fundación Ramón Areces and Banco Santander to the CBMSO are also acknowledged. The team at CBMSO belongs to the Global Virus Network (GVN). The work in Barcelona was supported by ISCIII, cofinanced by ERDF grant number PI19/00301 and by the Centro para el Desarrollo Tecnológico Industrial (CDTI) from the MICIU, grant number IDI20151125. Work at CAB was supported by MINECO grant BIO2016-79618R and PID2019-104903RB-I00 (funded by the EU under the FEDER program) and by the Spanish State research agency (AEI) through project number MDM-2017-0737 Unidad de Excelencia “María de Maeztu”-Centro de Astrobiología (CSIC-INTA). Work at IBMB was supported by MICIN grant BIO2017-83906-P (funded by the EU under the FEDER program). C.G.-C. is supported by predoctoral contract PRE2018-083422 from MICIU. B.M.-G. is supported by predoctoral contract PFIS FI19/00119 from Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo), cofinanced by Fondo Social Europeo (FSE).Peer reviewe

    Deletion Mutants of VPg Reveal New Cytopathology Determinants in a Picornavirus

    Get PDF
    BACKGROUND: Success of a viral infection requires that each infected cell delivers a sufficient number of infectious particles to allow new rounds of infection. In picornaviruses, viral replication is initiated by the viral polymerase and a viral-coded protein, termed VPg, that primes RNA synthesis. Foot-and-mouth disease virus (FMDV) is exceptional among picornaviruses in that its genome encodes 3 copies of VPg. Why FMDV encodes three VPgs is unknown. METHODOLOGY AND PRINCIPAL FINDINGS: we have constructed four mutant FMDVS that encode only one VPG: either VPg(1), VPg(3), or two chimeric versions containing part of VPg(1) and VPg(3). All mutants, except that encoding only VPg(1), were replication-competent. Unexpectedly, despite being replication-competent, the mutants did not form plaques on BHK-21 cell monolayers. The one-VPg mutant FMDVs released lower amounts of encapsidated viral RNA to the extracellular environment than wild type FMDV, suggesting that deficient plaque formation was associated with insufficient release of infectious progeny. Mutant FMDVs subjected to serial passages in BHK-21 cells regained plaque-forming capacity without modification of the number of copies of VPg. Substitutions in non-structural proteins 2C, 3A and VPg were associated with restoration of plaque formation. Specifically, replacement R55W in 2C was repeatedly found in several mutant viruses that had regained competence in plaque development. The effect of R55W in 2C was to mediate an increase in the extracellular viral RNA release without a detectable increase of total viral RNA that correlated with an enhanced capacity to alter and detach BHK-21 cells from the monolayer, the first stage of cell killing. CONCLUSIONS: The results link the VPg copies in the FMDV genome with the cytopathology capacity of the virus, and have unveiled yet another function of 2C: modulation of picornavirus cell-to-cell transmission. Implications for picornaviruses pathogenesis are discussed

    SARS-CoV-2 mutant spectra reveal differences between COVID-19 severity categories

    Get PDF
    Trabajo presentado en el XVI Congreso Nacional de Virología, celebrado en Málaga (España) del 06 al 09 de septiembre de 2022.RNA virus populations are composed of complex mixtures of genomes that are termed mutant spectra. SARS-CoV-2 replicates as a viral quasispecies, and mutations that are detected at low frequencies in a host can be dominant in subsequent variants. We have studied mutant spectrum complexities of SARS-CoV-2 populations derived from thirty nasopharyngeal swabs of patients infected during the first wave (April 2020) in the Hospital Universitario Fundación Jiménez Díaz. The patients were classified according to the COVID-19 severity in mild (non-hospitalized), moderate (hospitalized) and exitus (hospitalized with ICU admission and who passed away due to COVID-19). Using ultra-deep sequencing technologies (MiSeq, Illumina), we have examined four amplicons of the nsp12 (polymerase)-coding region and two amplicons of the spike-coding region. Ultra-deep sequencing data were analyzed with different cut-off frequency for mutation detection. Average number of different point mutations, mutations per haplotype and several diversity indices were significantly higher in SARS-CoV-2 isolated from patients who developed mild disease. A feature that we noted in the SARS-CoV-2 mutant spectra from diagnostic samples is the remarkable absence of mutations at intermediate frequencies, and an overwhelming abundance of mutations at frequencies lower than 10%. Thus, the decrease of the cut-off frequency for mutation detection from 0.5% to 0.1% revealed an increasement (50- to 100 fold) in the number of different mutations. The significantly higher frequency of mutations in virus from patients displaying mild than moderate or severe disease was maintained with the 0.1% cut- off frequency. To evaluate whether the frequency repertoire of amino acid substitutions differed between SARS-CoV-2 and the well characterized hepatitis C virus (HCV), we performed a comparative study of mutant spectra from infected patients using the same bioinformatics pipelines. HCV did not show the deficit of intermediate frequency substitutions that was observed with SARS-CoV-2. This difference was maintained when two functionally equivalent proteins, the corresponding viral polymerases, were compared. In conclusion, SARS-CoV-2 mutant spectra are rich reservoirs of mutants, whose complexity is not uniform among clinical isolates. Virus from patients who developed mild disease may be a source of new variants that may acquire epidemiological relevance.This work was supported by Instituto de Salud Carlos III, Spanish Ministry of Science and In-novation (COVID-19 Research Call COV20/00181), and co-financed by European Development Regional Fund ‘A way to achieve Europe’. The work was also supported by grants CSIC-COV19-014 from Consejo Superior de Investigaciones Científicas (CSIC), project 525/C/2021 from Fundació La Marató de TV3, PID2020-113888RB-I00 from Ministerio de Ciencia e Innovación, BFU2017-91384-EXP from Ministerio de Ciencia, Innovación y Universidades (MCIU), PI18/00210 and PI21/00139 from Instituto de Salud Carlos III, and S2018/BAA-4370 (PLATESA2 from Comunidad de Madrid/FEDER). C.P., M.C., and P.M. are supported by the Miguel Servet programme of the Instituto de Salud Carlos III (CPII19/00001, CPII17/00006, and CP16/00116, respectively) co-financed by the European Regional Development Fund (ERDF). CIBERehd (Centro de Investi-gación en Red de Enfermedades Hepáticas y Digestivas) is funded by Instituto de Salud Carlos III. Institutional grants from the Fundación Ramón Areces and Banco Santander to the CBMSO are also acknowledged. The team at CBMSO belongs to the Global Virus Network (GVN). B.M.-G. is supported by predoctoral contract PFIS FI19/00119 from Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo) cofinanced by Fondo Social Europeo (FSE). R.L.-V. is supported by predoctoral contract PEJD-2019-PRE/BMD-16414 from Comunidad de Madrid. C.G.-C. is sup-ported by predoctoral contract PRE2018-083422 from MCIU. BS was supported by a predoctoral research fellowship (Doctorados Industriales, DI-17-09134) from Spanish MINECO

    SARS-CoV-2 Point Mutation and Deletion Spectra and Their Association with Different Disease Outcomes

    Get PDF
    Mutant spectra of RNA viruses are important to understand viral pathogenesis and response to selective pressures. There is a need to characterize the complexity of mutant spectra in coronaviruses sampled from infected patients. In particular, the possible relationship between SARS-CoV-2 mutant spectrum complexity and disease associations has not been established. In the present study, we report an ultradeep sequencing (UDS) analysis of the mutant spectrum of amplicons from the nsp12 (polymerase)- and spike (S)-coding regions of 30 nasopharyngeal isolates (diagnostic samples) of SARS-CoV-2 of the first COVID-19 pandemic wave (Madrid, Spain, April 2020) classified according to the severity of ensuing COVID-19. Low-frequency mutations and deletions, counted relative to the consensus sequence of the corresponding isolate, were overwhelmingly abundant. We show that the average number of different point mutations, mutations per haplotype, and several diversity indices was significantly higher in SARS-CoV-2 isolated from patients who developed mild disease than in those associated with moderate or severe disease (exitus). No such bias was observed with RNA deletions. Location of amino acid substitutions in the three-dimensional structures of nsp12 (polymerase) and S suggest significant structural or functional effects. Thus, patients who develop mild symptoms may be a richer source of genetic variants of SARS-CoV-2 than patients with moderate or severe COVID-19.Peer reviewe

    SARS-CoV-2 Point Mutation and Deletion Spectra, and Their Association with Different Disease Outcome

    Get PDF
    Mutant spectra of RNA viruses are important to understand viral pathogenesis, and response to selective pressures. There is a need to characterize the complexity of mutant spectra in coronaviruses sampled from infected patients. In particular, the possible relationship between SARS-CoV-2 mutant spectrum complexity and disease associations has not been established. In the present study, we report an ultra-deep sequencing (UDS) analysis of the mutant spectrum of amplicons from the nsp12 (polymerase)- and spike (S)-coding regions of thirty nasopharyngeal isolates (diagnostic samples) of SARS-CoV-2 of the first COVID-19 pandemic wave (Madrid, Spain, April 2020) classified according to the severity of ensuing COVID-19. Low frequency mutations and deletions, counted relative to the consensus sequence of the corresponding isolate, were overwhelmingly abundant. We show that the average number of different point mutations, mutations per haplotype and several diversity indices was significantly higher in SARS-CoV-2 isolated from patients who developed mild disease than in those associated with moderate or severe disease (exitus). No such bias was observed with RNA deletions. Location of amino acid substitutions in the three dimensional structures of nsp12 (polymerase) and S suggest significant structural or functional effects. Thus, patients who develop mild symptoms may be a richer source of genetic variants of SARS-CoV-2 than patients with moderate or severe COVID-19.This work was supported by Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation (COVID-19 Research Call COV20/00181), and co‐financed by European Development Regional Fund ‘A way to achieve Europe’. The work was also supported by grants CSIC-COV19-014 from Consejo Superior de Investigaciones Científicas (CSIC), project 525/C/2021 from Fundació La Marató de TV3, PID2020-113888RB-I00 from Ministerio de Ciencia e Innovación, BFU2017-91384-EXP from Ministerio de Ciencia, Innovación y Universidades (MCIU), PI18/00210 and PI21/00139 from Instituto de Salud Carlos III and S2018/BAA-4370 (PLATESA2 from Comunidad de Madrid/FEDER). C.P., M.C. and P.M. are supported by the Miguel Servet programme of the Instituto de Salud Carlos III (CPII19/00001, CPII17/00006 and CP16/00116, respectively) cofinanced by the European Regional Development Fund (ERDF). CIBERehd (Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas) is funded by Instituto de Salud Carlos III. Institutional grants from the Fundación Ramón Areces and Banco Santander to the CBMSO are also acknowledged. The team at CBMSO belongs to the Global Virus Network (GVN). B.M.-G. is supported by predoctoral contract PFIS FI19/00119 from Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo) cofinanced by Fondo Social Europeo (FSE). R.L.- V. is supported by predoctoral contract PEJD-2019-PRE/BMD-16414 from Comunidad de Madrid. C.G.-C. is supported by predoctoral contract PRE2018-083422 from MCIU. BS was supported by a predoctoral research fellowship (Doctorados Industriales, DI-17- 09134) from Spanish MINECON

    SARS-CoV-2 Mutant Spectra at Different Depth Levels Reveal an Overwhelming Abundance of Low Frequency Mutations

    Get PDF
    Populations of RNA viruses are composed of complex and dynamic mixtures of variant genomes that are termed mutant spectra or mutant clouds. This applies also to SARS-CoV-2, and mutations that are detected at low frequency in an infected individual can be dominant (represented in the consensus sequence) in subsequent variants of interest or variants of concern. Here we briefly review the main conclusions of our work on mutant spectrum characterization of hepatitis C virus (HCV) and SARS-CoV-2 at the nucleotide and amino acid levels and address the following two new questions derived from previous results: (i) how is the SARS-CoV-2 mutant and deletion spectrum composition in diagnostic samples, when examined at progressively lower cut-off mutant frequency values in ultra-deep sequencing; (ii) how the frequency distribution of minority amino acid substitutions in SARS-CoV-2 compares with that of HCV sampled also from infected patients. The main conclusions are the following: (i) the number of different mutations found at low frequency in SARS-CoV-2 mutant spectra increases dramatically (50- to 100-fold) as the cut-off frequency for mutation detection is lowered from 0.5% to 0.1%, and (ii) that, contrary to HCV, SARS-CoV-2 mutant spectra exhibit a deficit of intermediate frequency amino acid substitutions. The possible origin and implications of mutant spectrum differences among RNA viruses are discussed.This work was supported by Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation (COVID-19 Research Call COV20/00181), and co-financed by European Development Regional Fund ‘A way to achieve Europe’. The work was also supported by grants CSIC-COV19-014 from Consejo Superior de Investigaciones Científicas (CSIC), project 525/C/2021 from Fundació La Marató de TV3, PID2020-113888RB-I00 from Ministerio de Ciencia e Innovación, BFU2017-91384-EXP from Ministerio de Ciencia, Innovación y Universidades (MCIU), PI18/00210 and PI21/00139 from Instituto de Salud Carlos III, and S2018/BAA-4370 (PLATESA2 from Comunidad de Madrid/FEDER). C.P., M.C., and P.M. are supported by the Miguel Servet programme of the Instituto de Salud Carlos III (CPII19/00001, CPII17/00006, and CP16/00116, respectively) cofinanced by the European Regional Development Fund (ERDF). CIBERehd (Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas) is funded by Instituto de Salud Carlos III. Institutional grants from the Fundación Ramón Areces and Banco Santander to the CBMSO are also acknowledged. The team at CBMSO belongs to the Global Virus Network (GVN). B.M.-G. is supported by predoctoral contract PFIS FI19/00119 from Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo) cofinanced by Fondo Social Europeo (FSE). R.L.-V. is supported by predoctoral contract PEJD-2019-PRE/BMD-16414 from Comunidad de Madrid. C.G.-C. is supported by predoctoral contract PRE2018-083422 from MCIU. P.S. is supported by postdoctoral contract “Margarita Salas” CA1/RSUE/2021 from MCIU. B.S. was supported by a predoctoral research fellowship (Doctorados Industriales, DI-17-09134) from Spanish MINECO.Peer reviewe

    Structural dynamics of picornaviral RdRP complexes. Implications for the design of antivirals

    No full text
    Genome replication in picornavirus is catalyzed by a virally encoded RNA dependent RNA polymerase, termed 3D. These viruses also use a small protein primer, named VPg to initiate RNA replication. Polymerase 3D also catalyzes the covalent linkage of UMP to a N-terminal tyrosine on VPg. Seven different crystal structures of foot-and-mouth disease virus (FMDV) 3D catalytic complexes have enhanced our understanding of template and primer recognition, VPg uridylylation and rNTP binding and catalysis. In addition, the biochemical and structural analyses of six different FMDV 3D ribavirin resistant mutants provided evidences of three different mechanisms of resistance to this mutagenic nucleoside analogue. Such structural information is providing new insights into the fidelity of RNA replication, and for the design of antiviral compounds. © 2012 Springer Science+Business Media B.V.Peer Reviewe
    corecore