3 research outputs found

    Role of Electronegativity in Environmentally Persistent Free Radicals (EPFRs) Formation on ZnO

    No full text
    Environmentally persistent free radicals (EPFRs), a group of emerging pollutants, have significantly longer lifetimes than typical free radicals. EPFRs form by the adsorption of organic precursors on a transition metal oxide (TMO) surface involving electron charge transfer between the organic and TMO. In this paper, dihalogenated benzenes were incorporated to study the role of electronegativity in the electron transfer process to obtain a fundamental knowledge of EPFR formation mechanism on ZnO. Upon chemisorption on ZnO nanoparticles at 250 °C, electron paramagnetic resonance (EPR) confirms the formation of oxygen adjacent carbon-centered organic free radicals with concentrations between 1016 and 1017 spins/g. The radical concentrations show a trend of 1,2-dibromobenzene (DBB) > 1,2-dichlorobenzene (DCB) > 1,2-difluorobenzene (DFB) illustrating the role of electronegativity on the amount of radical formation. X-ray absorption spectroscopy (XAS) confirms the reduction of the Zn2+ metal center, contrasting previous experimental evidence of an oxidative mechanism for ZnO single crystal EPFR formation. The extent of Zn reduction for the different organics (DBB > DCB > DFB) also correlates to their polarity. DFT calculations provide theoretical evidence of ZnO surface reduction and exhibit a similar trend of degree of reduction for different organics, further building on the experimental findings. The lifetimes of the EPFRs formed confirm a noteworthy persistency

    Electronic Signatures of a Model Pollutant–Particle System: Chemisorbed Phenol on TiO<sub>2</sub>(110)

    No full text
    Environmentally persistent free radicals (EPFRs) are a class of composite organic/metal oxide pollutants that have recently been discovered to form from a wide variety of substituted benzenes chemisorbed to commonly encountered oxides. Although a qualitative understanding of EPFR formation on particulate metal oxides has been achieved, a detailed understanding of the charge transfer mechanism that must accompany the creation of an unpaired radical electron is lacking. In this study, we perform photoelectron spectroscopy and electron energy loss spectroscopy on a well-defined model system–phenol chemisorbed on TiO<sub>2</sub>(110) to directly observe changes in the electronic structure of the oxide and chemisorbed phenol as a function of adsorption temperature. We show strong evidence that, upon exposure at high temperature, empty states in the TiO<sub>2</sub> are filled and the phenol HOMO is depopulated, as has been proposed in a conceptual model of EPFR formation. This experimental evidence of charge transfer provides a deeper understanding of the EPFR formation mechanism to guide future experimental and computational studies as well as potential environmental remediation strategies

    Vertical Architecture Solution-Processed Quantum Dot Photodetectors with Amorphous Selenium Hole Transport Layer

    No full text
    Colloidal quantum dots (CQDs) provide wide spectral tunability and high absorption coefficients owing to quantum confinement and large oscillator strengths, which along with solution processability, allow a facile, low-cost, and room-temperature deposition technique for the fabrication of photonic devices. However, many solution-processed CQD photodetector devices demonstrate low specific-detectivity and slow temporal response. To achieve improved photodetector characteristics, limiting carrier recombination and enhancing photogenerated carrier separation are crucial. In this study, we develop and present an alternate vertical-stack photodetector wherein we use a solution-processed quantum dot photoconversion layer coupled to an amorphous selenium (a-Se) wide-bandgap charge transport layer that is capable of exhibiting single-carrier hole impact ionization and is compatible with active-matrix readout circuitry. This a-Se chalcogenide transport layer enables the fabrication of high-performance and reliable solution-processed quantum dot photodetectors, with enhanced charge extraction capabilities, high specific detectivity (D* ∼ 0.5–5 × 1012 Jones), fast 3 dB electrical bandwidth (3 dB BW ∼ 22 MHz), low dark current density (JD ∼ 5–10 pA/cm2), low noise current (in ∼ 20–25 fW/Hz1/2), and high linear dynamic range (LDR ∼ 130–150 dB) across the measured visible electromagnetic spectrum (∼405–656 nm)
    corecore