16 research outputs found

    Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates

    Get PDF
    Economically feasible production of second-generation biofuels requires efficient co-fermentation of pentose and hexose sugars in lignocellulosic hydrolysates under very harsh conditions. Baker’s yeast is an excellent, traditionally used ethanol producer but is naturally not able to utilize pentoses. This is due to the lack of pentose-specific transporter proteins and enzymatic reactions. Thus, natural yeast strains must be modified by genetic engineering. Although the construction of various recombinant yeast strains able to ferment pentose sugars has been described during the last two decades, their rates of pentose utilization is still significantly lower than D-glucose fermentation. Moreover, pentoses are only fermented after D-glucose is exhausted, resulting in an uneconomical increase in the fermentation time. In this addendum, we discuss novel approaches to improve utilization of pentoses by development of specific transporters and substrate channeling in enzyme cascades. Addendum to: T Subtil, E Boles. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2012; 5: 14 PMID: 22424089 DOI: 10.1186/1754-6834-5-1

    Phosphorylation regulates the assembly of chloroplast import machinery

    Get PDF
    Chloroplast function depends on the translocation of cytosolically synthesized precursor proteins into the organelle. The recognition and transfer of most precursor proteins across the outer membrane depend on a membrane inserted complex. Two receptor components of this complex, Toc34 and Toc159, are GTPases, which can be phosphorylated by kinases present in the hosting membrane. However, the physiological function of phosphorylation is not yet understood in detail. It is demonstrated that both receptors are phosphorylated within their G-domains. In vitro, the phosphorylation of Toc34 disrupts both homo- and heterodimerization of the G-domains as determined using a phospho-mimicking mutant. In endogenous membranes this mutation or phosphorylation of the wild-type receptor disturbs the association of Toc34, but not of Toc159 with the translocation pore. Therefore, phosphorylation serves as an inhibitor for the association of Toc34 with other components of the complex and phosphorylation can now be discussed as a mechanism to exchange different isoforms of Toc34 within this ensemble

    Toc34, a dimer-forming GTPase at thechloroplast translocon

    No full text
    Plastids are complex plant organelles fulfilling essential physiological functions, such as photosynthesis and amino acid metabolism. The majority of proteins required for these functions are encoded in the nuclear genome and synthesized on cytosolic ribosomes as precursors, which are subsequently translocated across the outer and inner membrane of the organelle. Their targeting to the organelle is ensured by a so called transit peptide, which is specifically recognized by GTP-dependent receptors Toc159 and Toc34 at the cytosolic side of outer envelope. They cooperatively regulate the insertion of the precursor protein into the channel protein Toc75, thereby initiating the translocation process. Toc34 is regarded as the primary receptor, while Toc159 probably provides the driving force for the insertion. Precursor transfer is achieved by the physical interaction between both receptors in the GTP loaded state. One translocon unit, also called the Toc core complex, is formed by four molecules Toc34, four molecules Toc75 and one molecule Toc159. In the GDP-loaded state, Toc34 preferably forms homodimers, whose physiological function was investigated in the presented study. It could be shown that the dissociation of GDP and therefore the nucleotide exchange are inhibited by the homodimeric state of Toc34. Dissociation of the homodimer is induced by the recognition of a precursor protein, which renders the binding of GTP and subsequent interaction with Toc159 possible. Thus, the homodimeric conformation could reflect an inactive state of the translocon, preventing GTP consumption in the absence of a precursor protein. Both homodimerization as well as heterodimerization of the receptor are regulated by phosphorylation, which could be demonstrated by in vitro and in vivo approaches using atToc33 from Arabidopsis thaliana as a model system. Since the phosphorylated form of Toc34 cannot be assembled with the Toc core complex, it can be concluded that the interactions between GTPase domains not only regulate the transfer of precursor proteins, but also warrant the integrity of the translocon.Plastiden sind komplexe pflanzliche Organellen, die eine Vielzahl von lebensnotwenigen physiologischen Funktionen, wie Photosynthese oder Aminosäurestoffwechsel, erfüllen. Die Mehrzahl der dafür benötigten Enzyme ist im Kerngenom kodiert und wird an zytosolischen Ribosomen in Form von Vorstufenproteinen synthetisiert, die über die äußere und innere Hüllmembran der Plastiden transportiert werden müssen. Die korrekte Zielsteuerung ist dabei durch eine amino-terminale Extension, das sogenannte Transitpeptid, gewährleistet, welches von GTP-abhängigen Rezeptoren Toc34 und Toc159 auf der zytosolischen Seite der äußeren Hüllmembran erkannt wird. Beide Rezeptoren regulieren kooperativ die Insertion des Vorstufenproteins in die Translokationspore Toc75, wodurch der Translokationsprozess eingeleitet wird. Toc34 wird dabei als der primäre Rezeptor angesehen, wohingegen Toc159 wahrscheinlich die treibende Kraft für die Insertion generiert. Der Transfer des Vorstufenproteins wird durch eine Wechselwirkung der beiden Rezeptoren in GTP-beladenem Zustand ermöglicht. Eine Translokon-Einheit, genannt auch Toc-Kernkomplex, wird von vier bis fünf Molekülen Toc34, vier Molekülen Toc75 und einem Molekül Toc159 gebildet. In GDP beladenem Zustand bildet Toc34 bevorzugt Homodimere, deren mögliche physiologische Funktion im Rahmen der vorliegenden Arbeit untersucht wurde. Es konnte gezeigt werden, dass die Dissoziation von GDP und damit der Nukleotidaustausch im homodimeren Zustand von Toc34 verhindert ist. Erst nach Erkennung des Vorstufenproteins dissoziiert der Homodimer, wodurch die Bindung von GTP und die nachfolgende Interaktion mit Toc159 möglich werden. Die homodimere Konformation könnte daher einen inaktiven Zustand des Translokons darstellen, der einen unnötigen Verbrauch von GTP in Abwesenheit eines zu translozierenden Vorstufenproteins verhindern würde. Am Beispiel von atToc33 aus Arabidopsis thaliana konnte durch in vitro und in vivo Analysen gezeigt werden, dass sowohl Homodimerisierung von Toc34 als auch seine Heterodimerisierung mit Toc159 durch Phosphorylierung inhibiert werden können. Die Beobachtung, dass der phosphorylierte Rezeptor nicht mit dem Toc-Kernkomplex assembliert werden kann, lässt den Schluss zu, dass die Dimerisierung der GTPase-Domänen nicht nur für den Transfer der Vorstufenproteine, sondern auch die Integrität des Toc-Komplexes essenziell ist

    Maßgeschneiderte Hefezellen für biotechnologische Anwendungen

    No full text
    The tremendous body of knowledge about genetics, cell biology, and metabolism of Saccharomyces cerevisiae, as well as its long history and robustness in industrial fermentations, have made this yeast one of the most popular microbial cell factories. Novel genetic tools have enabled the rapid construction of strains producing various platform chemicals, fuels, or pharmaceuticals. The relevance of synthetic biology approaches, such as the construction of fully synthetic genomes and artificial cellular compartments are not only relevant for biotechnological applications but can also lead to new insight into basic principles of life

    Neuartige, metabolisch aktive Organellen in eukaryotischen Zellen

    No full text
    Microbial production of chemicals is a sustainable alternative to conventional industrial processes. However, the implementation of exogenous metabolic pathways is hampered by slow diffusion rates, competing pathways, or secretion of intermediates. Pre-existing organelles have been harnessed to overcome these problems, but these approaches suffer from interference with endogenous pathways. We have developed a new concept for the compartmentalization of enzymatic pathways in ER-derived vesicles

    Bacterial bifunctional chorismate mutase-prephenate dehydratase PheA increases flux into the yeast phenylalanine pathway and improves mandelic acid production

    No full text
    Mandelic acid is an important aromatic fine chemical and is currently mainly produced via chemical synthesis. Recently, mandelic acid production was achieved by microbial fermentations using engineered Escherichia coli and Saccharomyces cerevisiae expressing heterologous hydroxymandelate synthases (hmaS). The best-performing strains carried a deletion of the gene encoding the first enzyme of the tyrosine biosynthetic pathway and therefore were auxotrophic for tyrosine. This was necessary to avoid formation of the competing intermediate hydroxyphenylpyruvate, the preferred substrate for HmaS, which would have resulted in the predominant production of hydroxymandelic acid. However, feeding tyrosine to the medium would increase fermentation costs. In order to engineer a tyrosine prototrophic mandelic acid-producing S. cerevisiae strain, we tested three strategies: (1) rational engineering of the HmaS active site for reduced binding of hydroxyphenylpyruvate, (2) compartmentalization of the mandelic acid biosynthesis pathway by relocating HmaS together with the two upstream enzymes chorismate mutase Aro7 and prephenate dehydratase Pha2 into mitochondria or peroxisomes, and (3) utilizing a feedback-resistant version of the bifunctional E. coli enzyme PheA (PheAfbr) in an aro7 deletion strain. PheA has both chorismate mutase and prephenate dehydratase activity. Whereas the enzyme engineering approaches were only successful in respect to reducing the preference of HmaS for hydroxyphenylpyruvate but not in increasing mandelic acid titers, we could show that strategies (2) and (3) significantly reduced hydroxymandelic acid production in favor of increased mandelic acid production, without causing tyrosine auxotrophy. Using the bifunctional enzyme PheAfbr turned out to be the most promising strategy, and mandelic acid production could be increased 12-fold, yielding titers up to 120 mg/L. Moreover, our results indicate that utilizing PheAfbr also shows promise for other industrial applications with S. cerevisiae that depend on a strong flux into the phenylalanine biosynthetic pathway

    Production of octanoic acid in Saccharomyces cerevisiae: investigation of new precursor supply engineering strategies and intrinsic limitations

    No full text
    The eight-carbon fatty acid octanoic acid (OA) is an important platform chemical and precursor of many industrially relevant products. Its microbial biosynthesis is regarded as a promising alternative to current unsustainable production methods. In Saccharomyces cerevisiae, the production of OA had been previously achieved by rational engineering of the fatty acid synthase. For the supply of the precursor molecule acetyl-CoA and of the redox cofactor NADPH, the native pyruvate dehydrogenase bypass had been harnessed, or the cells had been additionally provided with a pathway involving a heterologous ATP-citrate lyase. Here, we redirected the flux of glucose towards the oxidative branch of the pentose phosphate pathway and overexpressed a heterologous phosphoketolase/phosphotransacetylase shunt to improve the supply of NADPH and acetyl-CoA in a strain background with abolished OA degradation. We show that these modifications lead to an increased yield of OA during the consumption of glucose by more than 60% compared to the parental strain. Furthermore, we investigated different genetic engineering targets to identify potential factors that limit the OA production in yeast. Toxicity assays performed with the engineered strains suggest that the inhibitory effects of OA on cell growth likely impose an upper limit to attainable OA yields

    Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters

    No full text
    The genome of S. cerevisae encodes at least twenty hexose transporter-like proteins. Despite extensive research, the functions of Hxt8-Hxt17 have remained poorly defined. Here, we show that Hxt13, Hxt15, Hxt16 and Hxt17 transport two major hexitols in nature, mannitol and sorbitol, with moderate affinities, by a facilitative mechanism. Moreover, Hxt11 and Hxt15 are capable of transporting xylitol, a five-carbon polyol derived from xylose, the most abundant pentose in lignocellulosic biomass. Hxt11, Hxt13, Hxt15, Hxt16 and Hxt17 are phylogenetically and functionally distinct from known polyol transporters. Based on docking of polyols to homology models of transporters, we propose the architecture of their active site. In addition, we determined the kinetic parameters of mannitol and sorbitol dehydrogenases encoded in the yeast genome, showing that they discriminate between mannitol and sorbitol to a much higher degree than the transporters

    Identification of a glucose-insensitive variant of Gal2 from Saccharomyces cerevisiae exhibiting a high pentose transport capacity

    No full text
    As abundant carbohydrates in renewable feedstocks, such as pectin-rich and lignocellulosic hydrolysates, the pentoses arabinose and xylose are regarded as important substrates for production of biofuels and chemicals by engineered microbial hosts. Their efficient transport across the cellular membrane is a prerequisite for economically viable fermentation processes. Thus, there is a need for transporter variants exhibiting a high transport rate of pentoses, especially in the presence of glucose, another major constituent of biomass-based feedstocks. Here, we describe a variant of the galactose permease Gal2 from Saccharomyces cerevisiae (Gal2N376Y/M435I), which is fully insensitive to competitive inhibition by glucose, but, at the same time, exhibits an improved transport capacity for xylose compared to the wildtype protein. Due to this unique property, it significantly reduces the fermentation time of a diploid industrial yeast strain engineered for efficient xylose consumption in mixed glucose/xylose media. When the N376Y/M435I mutations are introduced into a Gal2 variant resistant to glucose-induced degradation, the time necessary for the complete consumption of xylose is reduced by approximately 40%. Moreover, Gal2N376Y/M435I confers improved growth of engineered yeast on arabinose. Therefore, it is a valuable addition to the toolbox necessary for valorization of complex carbohydrate mixtures

    Functional expression of the human glucose transporters GLUT2 and GLUT3 in yeast offers novel screening systems for GLUT-targeting drugs

    Get PDF
    Human GLUT2 and GLUT3, members of the GLUT / SLC2 gene family, facilitate glucose transport in specific tissues. Their malfunction or misregulation is associated with serious diseases, including diabetes, metabolic syndrome, and cancer. Despite being promising drug targets, GLUTs have only a few specific inhibitors. To identify and characterize potential GLUT2 and GLUT3 ligands, we developed a whole-cell system based on a yeast strain deficient in hexose uptake, whose growth defect on glucose can be rescued by the functional expression of human transporters. The simplicity of handling yeast cells makes this platform convenient for screening potential GLUT2 and GLUT3 inhibitors in a growth-based manner, amenable to high-throughput approaches. Moreover, our expression system is less laborious for detailed kinetic characterization of inhibitors than alternative methods such as the preparation of proteoliposomes or uptake assays in Xenopus oocytes. We show that functional expression of GLUT2 in yeast requires the deletion of the extended extracellular loop connecting transmembrane domains TM1 and TM2, which appears to negatively affect the trafficking of the transporter in the heterologous expression system. Furthermore, single amino acid substitutions at specific positions of the transporter sequence appear to positively affect the functionality of both GLUT2 and GLUT3 in yeast. We show that these variants are sensitive to known inhibitors phloretin and quercetin, demonstrating the potential of our expression systems to significantly accelerate the discovery of compounds that modulate the hexose transport activity of GLUT2 and GLUT3
    corecore