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Economically feasible production of 
second-generation biofuels requires 

efficient co-fermentation of pentose and 
hexose sugars in lignocellulosic hydroly-
sates under very harsh conditions. Baker’s 
yeast is an excellent, traditionally used 
ethanol producer but is naturally not able 
to utilize pentoses. This is due to the lack 
of pentose-specific transporter proteins 
and enzymatic reactions. Thus, natural 
yeast strains must be modified by genetic 
engineering. Although the construction 
of various recombinant yeast strains 
able to ferment pentose sugars has been 
described during the last two decades, 
their rates of pentose utilization is still 
significantly lower than d-glucose fer-
mentation. Moreover, pentoses are only 
fermented after d-glucose is exhausted, 
resulting in an uneconomical increase in 
the fermentation time. In this addendum, 
we discuss novel approaches to improve 
utilization of pentoses by development of 
specific transporters and substrate chan-
neling in enzyme cascades.

Introduction

Global needs for renewable energy sources 
have stimulated efforts to metabolically 
engineer microorganisms capable of syn-
thesizing alcohols by fermentation of plant 
biomass. Recent research particularly con-
centrates on the usage of lignocellulosic 
substrates such as crop wastes, forestry res-
idues and municipal solid waste to avoid 
the consumption of food products for 
fuel synthesis. Lignocellulose is a complex 
mixture of polymers like cellulose, hemi-
cellulose and lignin; cellulose consists of 
d-glucose chains, while hemicellulose 
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additionally contains the pentose sug-
ars d-xylose and, in only lower amounts, 
l-arabinose which together can make up 
30–40% of total sugars. Efficient exploi-
tation of the substrate would therefore 
require the ability of a microorganism to 
metabolize not only d-glucose but also the 
pentose sugars. However, the baker’s yeast 
Saccharomyces cerevisiae, which is the most 
commonly used organism for bioethanol 
production, is naturally not able to metab-
olize l-arabinose and d-xylose. Several 
strategies have therefore been developed to 
enable yeast to convert these sugars into 
metabolic intermediates that can be fun-
neled into the endogenous metabolism via 
the pentose phosphate pathway (PPP) (for 
a review, see refs. 1–4). In an approach 
favored by our laboratory, d-xylose is isom-
erized by a bacterial d-xylose isomerase 
(XI) to d-xylulose, which is subsequently 
phosphorylated by an endogenous d-xylu-
lokinase, yielding d-xylulose-5-phosphate 
(Xul5P), an intermediate of the non-oxi-
dative part of the PPP.5 The conversion 
of l-arabinose to Xul5P is more complex; 
the pathway engineered in our laboratory 
involves codon-optimized l-arabinose 
isomerase from Bacillus licheniformis 
(araA), l-ribulokinase (araB) and l-ribu-
lose-5-P 4-epimerase (araD) from E. 
coli.6,7 Through a cascade of reactions in 
the PPP, Xul5P is converted into glycolytic 
intermediates d-fructose-6-phosphate 
(F6P) and d-glyceraldehyde-3-phosphate 
(GAP) which are finally fermented to 
ethanol. Despite great research effort that 
has been put into strain optimization 
by dozens of groups during the last two 
decades, the rate of pentose utilization 
by engineered yeast is still significantly 
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and F6P by transaldolase; however, the 
highly abundant glycolytic enzyme glyc-
eraldehyde-3-phosphate-dehydrogenase 
(GAPDH) sequesters GAP produced by 
transketolase, leading to a stoichiometric 
imbalance with S7P and, consequently, to 
a bottleneck at the transaldolase reaction. 
Consistent with this, accumulation of S7P 
has been observed in yeast strains grown 
both on d-xylulose15 and l-arabinose.16 
This effect can be partly suppressed by 
overexpression (or upregulation) of trans-
aldolase genes.16,17 The downregulation 
of certain GAPDH isoforms—which is 
a recurring observation made in different 
strains evolved to grow on d-xylose (refs. 
18 and 19; Oreb and Boles, unpublished 
result) or l-arabinose (ref. 16; Wiedemann 
and Boles, unpublished results)—sup-
ports the view that this bottleneck is 
caused by the competition of GAPDH 
and TAL for GAP. An elegant possibil-
ity to channel GAP produced by TKL 
directly to TAL would be a physical inter-
action between these enzymes. Guided 
by this idea, we co-expressed both pro-
teins fused to coiled-coil domains which 
undergo strong dimeric interactions. Our 
preliminary results show that d-xylose 
utilizing laboratory strains transformed 
with the fusion constructs exhibit a sig-
nificantly faster growth on d-xylose com-
pared with the reference strain expressing 
native TAL and TKL (Oreb and Boles, 
unpublished results). These first promis-
ing results suggest that other bottlenecks 
could also be relieved by substrate chan-
neling; for example, the formation of 
d-xylitol could be suppressed by tether-
ing of XI and XK on d-xylose transporter 
proteins. At the same time, co-localization 
of pentose-modifying enzymes with trans-
porters could accelerate the transport rate 
by perpetuating a steep concentration 
gradient of the pentoses across the plasma 
membrane.

Genetic Engineering of Robust 
Industrial Yeast Strains

For efficient industrial production of eth-
anol from mixed-sugar hydrolysates it is 
crucial to implement the pentose fermen-
tation technology into robust, industrially 
used yeast strains. Laboratory strains like 
S288C or the CEN.PK-series (Euroscarf) 

endogenous hexose transporter genes were 
deleted, enabling us to re-introduce indi-
vidual sugar transporters.

This system is used to screen for 
improved, “d-glucose-resistant” d-xylose 
transporters, either native (e.g., from 
cDNA libraries) or after mutagenesis of 
sugar transporters like Hxt7 or Gal2. 
Additionally, evolutionary engineering 
approaches are possible—addition of 
increasing concentrations of d-glucose to 
d-xylose growth medium can be applied 
as an evolutionary growth pressure to 
force the culture to accumulate benefi-
cial mutations in order to overcome the 
inhibition. Both strategies already led to 
first promising results in our laboratory. 
Sequence analysis revealed mutations at 
position T213 in Hxt7, a position that has 
also been identified by Kasahara14 to be 
one of the key residues for d-glucose affin-
ity. Our results imply that this residue is 
important for discrimination between 
d-glucose and d-xylose and mutations 
at this position impair d-glucose affinity 
more than d-xylose affinity. Based on our 
previously reported analyses10 the newly 
engineered transporters should lead to 
significantly improved co-fermentation 
of d-xylose and d-glucose, and therefore 
faster fermentation rates of mixed-sugar 
hydrolysates.

Substrate Channelling Improves 
Pentose Fermentation Rates

Independently of the transport efficiency, 
pathway bottlenecks seem to occur due 
to the drain of reaction intermediates by 
competing pathways. For example, some 
promiscuous aldose-reductases (e.g., 
Gre3) are capable of reducing a part of the 
available d-xylose to d-xylitol, which can-
not be efficiently metabolized and addi-
tionally has an inhibitory effect on the 
XI.5 Moreover, as shown by our group,10 
hexoses and pentoses slightly compete dur-
ing their catabolism. A further bottleneck 
imposed by competition for metabolites 
by different enzymes seems to occur in the 
non-oxidative part of PPP, namely after 
the first transketolase reaction (see Fig. 2), 
which yields sedoheptulose-7-phosphate 
(S7P) and GAP. In the “desired” reac-
tion scheme, these metabolites are con-
verted to erythrose-4-phosphate (E4P) 

slower than the fermentation of d-glu-
cose, even when xylulokinase (XK) and 
all enzymes of the non-oxidative part of 
the PPP, d-ribulose 5-phosphate isomerase 
(RKI), d-ribulose 5-phosphate epimerase 
(RPE), transketolase (TKL) and transal-
dolase (TAL), are strongly overexpressed 
(ref. 8; Dietz and Boles, unpublished 
results). One major limitation is imposed 
by the lack of specific and efficient pentose 
transporters. Other important bottlenecks 
seem to occur due to the drain of reaction 
intermediates by competing enzymatic 
reactions and pathways.

Development of Efficient and  
Specific Pentose Transporters

Pentose transport in S. cerevisiae is medi-
ated by different members of the hexose 
transporter family e.g., Hxt7 for d-xylose 
and Gal2 for l-arabinose and d-xylose.6,9 
These transporters, however, have only 
a low affinity for pentoses and consid-
erably limit the overall pentose utiliza-
tion. Furthermore, the affinities for their 
respective hexose substrates d-glucose or 
d-galactose are higher than their affinities 
for pentoses, leading to competitive inhi-
bition of pentose transport in the presence 
of hexoses as being present in lignocellu-
losic hydrolysates. This causes sequential 
rather than simultaneous consumption 
of hexoses and pentoses, which is unde-
sirable from an economical as well as an 
operational standpoint. Improvements 
in d-xylose fermentation can be achieved 
by overexpression of pentose transporting 
hexose transporters, which also alleviates 
competitive inhibition to a small extent, 
but efficient co-fermentation is still not 
possible.10

As several approaches to express spe-
cific pentose transporters, that are not 
inhibited by d-glucose, in S. cerevisiae 
have failed,11-13 our laboratory has recently 
developed a novel screening system to 
search for heterologous, specific pentose 
transporters or to engineer them from 
hexose transporters. In a d-xylose utiliz-
ing yeast strain glucose utilization was 
disrupted at its first step by deletion of 
the hexo-/glucokinase genes, resulting in 
d-glucose being no longer used as a carbon 
source but only acting as a mere inhibitor 
of pentose uptake (Fig. 1). In addition, all 
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into the genome. Consequently, gene dele-
tions or insertions have to be performed 
for all alleles to obtain a stable genotype. 
At the same time, the number of trans-
formation steps has to be kept small to 
avoid accumulation of negative mutations. 
Evolutionary engineering approaches 
should comply with industrial fermenta-
tion and propagation conditions in order 
to maintain all beneficial properties of a 
strain.

In our laboratory, the alcohol yeast 
strain Ethanol Red (Fermentis) that had 
been developed for ethanol industry has 

of undesirable by-products like glycerol. 
Importantly, industrial yeast strains are 
extraordinarily stable under a variety of 
manufacturing conditions including dry-
ing and long-term storage.

On the other hand, genetic manipula-
tion of diploid or even aneuploid industrial 
strains is challenging, especially if their 
exact genomic sequence is not known. 
Under large-scale fermentation condi-
tions, the usage of plasmids is undesirable 
as their maintenance depends on selectable 
markers. All genetic manipulations should 
therefore be based on a stable integration 

are easily genetically modified and the 
functionality of l-arabinose or d-xylose 
utilization pathways has been shown by 
various laboratories.6,8 Moreover, it has 
been possible to increase the resistance to 
fermentation inhibitors like acetate,20 fur-
fural or hydroxymethylfurfural.21 Despite 
these advancements, most industrial yeast 
strains are still much more robust and 
resistant to the toxic inhibitor cocktail 
present in lignocellulosic hydrolysates. 
In addition, industrial yeast strains show 
higher specific ethanol productivities, eth-
anol yields and produce a lower amount 

Figure 1. Schematic overview of the novel screening system. The strain has no hexose transporters (Δhxt) except the engineered one that is re-
introduced (eT). Glycolysis is blocked at the first step by deletion of hexo-/gluco-kinases. Xylose metabolism is established by overexpression of the 
Clostridium phytofermentans xylose isomerase (XI) and endogenous xylulokinase XKS1 (XK) and non-oxidative pentose phosphate pathway enzymes. 
The limitation of d-xylose utilization and the evolutionary pressure exerted by d-glucose concentrates on the re-introduced transporter.
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Conclusions

For industrial ethanol production from 
lignocellulosic hydrolysates, yeast strains 
with high hexose and pentose fermenta-
tion rates and the ability to co-ferment 
d-glucose and pentoses are needed. 
Genetic engineering of industrial alco-
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neling complexes will pave the way to an 
economically feasible conversion of plant 
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proven to be a promising candidate for 
the fermentation of lignocellulosic hydro-
lysates. Moreover, we have successfully 
established protocols for the transfer of 
the developed pentose fermentation tech-
nologies into this strain. Elaborate genetic 
cassettes for d-xylose and l-arabinose uti-
lization pathways were stably integrated 
into the genome of the Ethanol Red 
strain. After evolutionary engineering, we 
obtained a strain efficiently fermenting 
d-glucose and pentoses to ethanol with 
high production rates and nearly maxi-
mal yields (Dietz and Boles, unpublished 
results). With our currently best devel-
oped strain, e.g., complete d-xylose fer-
mentation takes only about twice as long 
as that for d-glucose. The next steps will 
now be to introduce the newly developed 
specific pentose transporters and the sub-
strate channeling modules into this strain 

Figure 2. Bottlenecks in pentose fermentation by engineered yeast. Drain of pathway intermediates by competing pathways is depicted by dashed 
lines. The stoichiometric imbalance of reaction intermediates at the TAL reaction is depicted by the font size. For clarity, only those enzymes men-
tioned in the main text are shown and reverse reactions are not considered. The terminal metabolites of the PPP which can be further metabolized in 
glycolysis are shown in gray boxes. The glycolytic intermediates shown are d-glucose-6-phosphate (G6P), d-fructose-6-phosphate (F6P),  
d-fructose-1,6-bisphosphate (F1,6bP) and dihydroxyacetone-phosphate (DHAP). Other abbreviations used are the same as in the main text. The inter-
mediates downstream of the GAPDH reaction are omitted for clarity.
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