307 research outputs found

    Generalization properties of finite size polynomial Support Vector Machines

    Full text link
    The learning properties of finite size polynomial Support Vector Machines are analyzed in the case of realizable classification tasks. The normalization of the high order features acts as a squeezing factor, introducing a strong anisotropy in the patterns distribution in feature space. As a function of the training set size, the corresponding generalization error presents a crossover, more or less abrupt depending on the distribution's anisotropy and on the task to be learned, between a fast-decreasing and a slowly decreasing regime. This behaviour corresponds to the stepwise decrease found by Dietrich et al.[Phys. Rev. Lett. 82 (1999) 2975-2978] in the thermodynamic limit. The theoretical results are in excellent agreement with the numerical simulations.Comment: 12 pages, 7 figure

    Retarded Learning: Rigorous Results from Statistical Mechanics

    Full text link
    We study learning of probability distributions characterized by an unknown symmetry direction. Based on an entropic performance measure and the variational method of statistical mechanics we develop exact upper and lower bounds on the scaled critical number of examples below which learning of the direction is impossible. The asymptotic tightness of the bounds suggests an asymptotically optimal method for learning nonsmooth distributions.Comment: 8 pages, 1 figur

    Statistical mechanics of random two-player games

    Full text link
    Using methods from the statistical mechanics of disordered systems we analyze the properties of bimatrix games with random payoffs in the limit where the number of pure strategies of each player tends to infinity. We analytically calculate quantities such as the number of equilibrium points, the expected payoff, and the fraction of strategies played with non-zero probability as a function of the correlation between the payoff matrices of both players and compare the results with numerical simulations.Comment: 16 pages, 6 figures, for further information see http://itp.nat.uni-magdeburg.de/~jberg/games.htm

    Inferring hidden states in Langevin dynamics on large networks: Average case performance

    Get PDF
    We present average performance results for dynamical inference problems in large networks, where a set of nodes is hidden while the time trajectories of the others are observed. Examples of this scenario can occur in signal transduction and gene regulation networks. We focus on the linear stochastic dynamics of continuous variables interacting via random Gaussian couplings of generic symmetry. We analyze the inference error, given by the variance of the posterior distribution over hidden paths, in the thermodynamic limit and as a function of the system parameters and the ratio {\alpha} between the number of hidden and observed nodes. By applying Kalman filter recursions we find that the posterior dynamics is governed by an "effective" drift that incorporates the effect of the observations. We present two approaches for characterizing the posterior variance that allow us to tackle, respectively, equilibrium and nonequilibrium dynamics. The first appeals to Random Matrix Theory and reveals average spectral properties of the inference error and typical posterior relaxation times, the second is based on dynamical functionals and yields the inference error as the solution of an algebraic equation.Comment: 20 pages, 5 figure

    Entropy and typical properties of Nash equilibria in two-player games

    Full text link
    We use techniques from the statistical mechanics of disordered systems to analyse the properties of Nash equilibria of bimatrix games with large random payoff matrices. By means of an annealed bound, we calculate their number and analyse the properties of typical Nash equilibria, which are exponentially dominant in number. We find that a randomly chosen equilibrium realizes almost always equal payoffs to either player. This value and the fraction of strategies played at an equilibrium point are calculated as a function of the correlation between the two payoff matrices. The picture is complemented by the calculation of the properties of Nash equilibria in pure strategies.Comment: 6 pages, was "Self averaging of Nash equilibria in two player games", main section rewritten, some new results, for additional information see http://itp.nat.uni-magdeburg.de/~jberg/games.htm

    Generalizing with perceptrons in case of structured phase- and pattern-spaces

    Full text link
    We investigate the influence of different kinds of structure on the learning behaviour of a perceptron performing a classification task defined by a teacher rule. The underlying pattern distribution is permitted to have spatial correlations. The prior distribution for the teacher coupling vectors itself is assumed to be nonuniform. Thus classification tasks of quite different difficulty are included. As learning algorithms we discuss Hebbian learning, Gibbs learning, and Bayesian learning with different priors, using methods from statistics and the replica formalism. We find that the Hebb rule is quite sensitive to the structure of the actual learning problem, failing asymptotically in most cases. Contrarily, the behaviour of the more sophisticated methods of Gibbs and Bayes learning is influenced by the spatial correlations only in an intermediate regime of α\alpha, where α\alpha specifies the size of the training set. Concerning the Bayesian case we show, how enhanced prior knowledge improves the performance.Comment: LaTeX, 32 pages with eps-figs, accepted by J Phys

    An information theoretic approach to statistical dependence: copula information

    Full text link
    We discuss the connection between information and copula theories by showing that a copula can be employed to decompose the information content of a multivariate distribution into marginal and dependence components, with the latter quantified by the mutual information. We define the information excess as a measure of deviation from a maximum entropy distribution. The idea of marginal invariant dependence measures is also discussed and used to show that empirical linear correlation underestimates the amplitude of the actual correlation in the case of non-Gaussian marginals. The mutual information is shown to provide an upper bound for the asymptotic empirical log-likelihood of a copula. An analytical expression for the information excess of T-copulas is provided, allowing for simple model identification within this family. We illustrate the framework in a financial data set.Comment: to appear in Europhysics Letter

    Storage of correlated patterns in a perceptron

    Full text link
    We calculate the storage capacity of a perceptron for correlated gaussian patterns. We find that the storage capacity αc\alpha_c can be less than 2 if similar patterns are mapped onto different outputs and vice versa. As long as the patterns are in general position we obtain, in contrast to previous works, that αc1\alpha_c \geq 1 in agreement with Cover's theorem. Numerical simulations confirm the results.Comment: 9 pages LaTeX ioplppt style, figures included using eps

    Perceptron capacity revisited: classification ability for correlated patterns

    Full text link
    In this paper, we address the problem of how many randomly labeled patterns can be correctly classified by a single-layer perceptron when the patterns are correlated with each other. In order to solve this problem, two analytical schemes are developed based on the replica method and Thouless-Anderson-Palmer (TAP) approach by utilizing an integral formula concerning random rectangular matrices. The validity and relevance of the developed methodologies are shown for one known result and two example problems. A message-passing algorithm to perform the TAP scheme is also presented

    Phase transitions in soft-committee machines

    Get PDF
    Equilibrium statistical physics is applied to layered neural networks with differentiable activation functions. A first analysis of off-line learning in soft-committee machines with a finite number (K) of hidden units learning a perfectly matching rule is performed. Our results are exact in the limit of high training temperatures. For K=2 we find a second order phase transition from unspecialized to specialized student configurations at a critical size P of the training set, whereas for K > 2 the transition is first order. Monte Carlo simulations indicate that our results are also valid for moderately low temperatures qualitatively. The limit K to infinity can be performed analytically, the transition occurs after presenting on the order of N K examples. However, an unspecialized metastable state persists up to P= O (N K^2).Comment: 8 pages, 4 figure
    corecore