307 research outputs found
Generalization properties of finite size polynomial Support Vector Machines
The learning properties of finite size polynomial Support Vector Machines are
analyzed in the case of realizable classification tasks. The normalization of
the high order features acts as a squeezing factor, introducing a strong
anisotropy in the patterns distribution in feature space. As a function of the
training set size, the corresponding generalization error presents a crossover,
more or less abrupt depending on the distribution's anisotropy and on the task
to be learned, between a fast-decreasing and a slowly decreasing regime. This
behaviour corresponds to the stepwise decrease found by Dietrich et al.[Phys.
Rev. Lett. 82 (1999) 2975-2978] in the thermodynamic limit. The theoretical
results are in excellent agreement with the numerical simulations.Comment: 12 pages, 7 figure
Retarded Learning: Rigorous Results from Statistical Mechanics
We study learning of probability distributions characterized by an unknown
symmetry direction. Based on an entropic performance measure and the
variational method of statistical mechanics we develop exact upper and lower
bounds on the scaled critical number of examples below which learning of the
direction is impossible. The asymptotic tightness of the bounds suggests an
asymptotically optimal method for learning nonsmooth distributions.Comment: 8 pages, 1 figur
Statistical mechanics of random two-player games
Using methods from the statistical mechanics of disordered systems we analyze
the properties of bimatrix games with random payoffs in the limit where the
number of pure strategies of each player tends to infinity. We analytically
calculate quantities such as the number of equilibrium points, the expected
payoff, and the fraction of strategies played with non-zero probability as a
function of the correlation between the payoff matrices of both players and
compare the results with numerical simulations.Comment: 16 pages, 6 figures, for further information see
http://itp.nat.uni-magdeburg.de/~jberg/games.htm
Inferring hidden states in Langevin dynamics on large networks: Average case performance
We present average performance results for dynamical inference problems in
large networks, where a set of nodes is hidden while the time trajectories of
the others are observed. Examples of this scenario can occur in signal
transduction and gene regulation networks. We focus on the linear stochastic
dynamics of continuous variables interacting via random Gaussian couplings of
generic symmetry. We analyze the inference error, given by the variance of the
posterior distribution over hidden paths, in the thermodynamic limit and as a
function of the system parameters and the ratio {\alpha} between the number of
hidden and observed nodes. By applying Kalman filter recursions we find that
the posterior dynamics is governed by an "effective" drift that incorporates
the effect of the observations. We present two approaches for characterizing
the posterior variance that allow us to tackle, respectively, equilibrium and
nonequilibrium dynamics. The first appeals to Random Matrix Theory and reveals
average spectral properties of the inference error and typical posterior
relaxation times, the second is based on dynamical functionals and yields the
inference error as the solution of an algebraic equation.Comment: 20 pages, 5 figure
Entropy and typical properties of Nash equilibria in two-player games
We use techniques from the statistical mechanics of disordered systems to
analyse the properties of Nash equilibria of bimatrix games with large random
payoff matrices. By means of an annealed bound, we calculate their number and
analyse the properties of typical Nash equilibria, which are exponentially
dominant in number. We find that a randomly chosen equilibrium realizes almost
always equal payoffs to either player. This value and the fraction of
strategies played at an equilibrium point are calculated as a function of the
correlation between the two payoff matrices. The picture is complemented by the
calculation of the properties of Nash equilibria in pure strategies.Comment: 6 pages, was "Self averaging of Nash equilibria in two player games",
main section rewritten, some new results, for additional information see
http://itp.nat.uni-magdeburg.de/~jberg/games.htm
Generalizing with perceptrons in case of structured phase- and pattern-spaces
We investigate the influence of different kinds of structure on the learning
behaviour of a perceptron performing a classification task defined by a teacher
rule. The underlying pattern distribution is permitted to have spatial
correlations. The prior distribution for the teacher coupling vectors itself is
assumed to be nonuniform. Thus classification tasks of quite different
difficulty are included. As learning algorithms we discuss Hebbian learning,
Gibbs learning, and Bayesian learning with different priors, using methods from
statistics and the replica formalism. We find that the Hebb rule is quite
sensitive to the structure of the actual learning problem, failing
asymptotically in most cases. Contrarily, the behaviour of the more
sophisticated methods of Gibbs and Bayes learning is influenced by the spatial
correlations only in an intermediate regime of , where
specifies the size of the training set. Concerning the Bayesian case we show,
how enhanced prior knowledge improves the performance.Comment: LaTeX, 32 pages with eps-figs, accepted by J Phys
An information theoretic approach to statistical dependence: copula information
We discuss the connection between information and copula theories by showing
that a copula can be employed to decompose the information content of a
multivariate distribution into marginal and dependence components, with the
latter quantified by the mutual information. We define the information excess
as a measure of deviation from a maximum entropy distribution. The idea of
marginal invariant dependence measures is also discussed and used to show that
empirical linear correlation underestimates the amplitude of the actual
correlation in the case of non-Gaussian marginals. The mutual information is
shown to provide an upper bound for the asymptotic empirical log-likelihood of
a copula. An analytical expression for the information excess of T-copulas is
provided, allowing for simple model identification within this family. We
illustrate the framework in a financial data set.Comment: to appear in Europhysics Letter
Storage of correlated patterns in a perceptron
We calculate the storage capacity of a perceptron for correlated gaussian
patterns. We find that the storage capacity can be less than 2 if
similar patterns are mapped onto different outputs and vice versa. As long as
the patterns are in general position we obtain, in contrast to previous works,
that in agreement with Cover's theorem. Numerical simulations
confirm the results.Comment: 9 pages LaTeX ioplppt style, figures included using eps
Perceptron capacity revisited: classification ability for correlated patterns
In this paper, we address the problem of how many randomly labeled patterns
can be correctly classified by a single-layer perceptron when the patterns are
correlated with each other. In order to solve this problem, two analytical
schemes are developed based on the replica method and Thouless-Anderson-Palmer
(TAP) approach by utilizing an integral formula concerning random rectangular
matrices. The validity and relevance of the developed methodologies are shown
for one known result and two example problems. A message-passing algorithm to
perform the TAP scheme is also presented
Phase transitions in soft-committee machines
Equilibrium statistical physics is applied to layered neural networks with
differentiable activation functions. A first analysis of off-line learning in
soft-committee machines with a finite number (K) of hidden units learning a
perfectly matching rule is performed. Our results are exact in the limit of
high training temperatures. For K=2 we find a second order phase transition
from unspecialized to specialized student configurations at a critical size P
of the training set, whereas for K > 2 the transition is first order. Monte
Carlo simulations indicate that our results are also valid for moderately low
temperatures qualitatively. The limit K to infinity can be performed
analytically, the transition occurs after presenting on the order of N K
examples. However, an unspecialized metastable state persists up to P= O (N
K^2).Comment: 8 pages, 4 figure
- …