1 research outputs found

    Mouse dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus.

    No full text
    We identified the Dexamethasone-induced RAS protein 1 (Dexras1) gene as a cycling gene in the suprachiasmatic nucleus (SCN). Investigation of the whole brain using in situ hybridization demonstrated the localization of the expression of the gene in the SCN, thalamus, piriform cortex and hippocampus. However, rhythmic expression of the gene was observed only in the SCN. The rhythmic change in gene expression during 1 day was approximately five-fold, and the maximum expression was observed during subjective night. Real-time PCR using the SCN, paraventricular nucleus and cortex confirmed these results. Next, we analyzed the expression of the Dexras1 gene in the SCN of cryptochrome (Cry) 1 and 2 double knockout mice. We found that the rhythmic expression disappeared. The results indicate that Dexras1 rhythmicity and levels are dependent upon CRYs. This is the first time that the G protein, which may be involved in the input pathway, has been isolated as a cycling gene in the SCN.\nMouse dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus.\nTakahashi H, Umeda N, Tsutsumi Y, Fukumura R, Ohkaze H, Sujino M, van der Horst G, Yasui A, Inouye ST, Fujimori A, Ohhata T, Araki R, Abe M.\nTranscriptome Profiling Group, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.\nWe identified the Dexamethasone-induced RAS protein 1 (Dexras1) gene as a cycling gene in the suprachiasmatic nucleus (SCN). Investigation of the whole brain using in situ hybridization demonstrated the localization of the expression of the gene in the SCN, thalamus, piriform cortex and hippocampus. However, rhythmic expression of the gene was observed only in the SCN. The rhythmic change in gene expression during 1 day was approximately five-fold, and the maximum expression was observed during subjective night. Real-time PCR using the SCN, paraventricular nucleus and cortex confirmed these results. Next, we analyzed the expression of the Dexras1 gene in the SCN of cryptochrome (Cry) 1 and 2 double knockout mice. We found that the rhythmic expression disappeared. The results indicate that Dexras1 rhythmicity and levels are dependent upon CRYs. This is the first time that the G protein, which may be involved in the input pathway, has been isolated as a cycling gene in the SCN
    corecore