2,951 research outputs found

    Observation of Vortex Matching Phenomena in Antidot Array of NbN Thin Film

    Full text link
    We report vortex matching phenomenon in rectangular antidot array fabricated on epitaxial NbN thin film. The antidot array was fabricated using Focussed Ion Beam milling technique. The magneto-transport measurements points to a period doubling transition at higher magnetic field for rectangular lattices. The results are discussed within the light of several models including the multi-vortex model, the matched lattice model and the super-matched lattice model.Comment: Added references, modified abstract and discussions and corrected typo-graphic errors. Accepted for proceedings of M2S-IX 2009, Tokyo (Physica C

    Microcantilever Studies of Angular Field Dependence of Vortex Dynamics in BSCCO

    Full text link
    Using a nanogram-sized single crystal of BSCCO attached to a microcantilever we demonstrate in a direct way that in magnetic fields nearly parallel to the {\it ab} plane the magnetic field penetrates the sample in the form of Josephson vortices rather than in the form of a tilted vortex lattice. We further investigate the relation between the Josephson vortices and the pancake vortices generated by the perpendicular field component.Comment: 5 pages, 8 figure

    Vortex matching effect in engineered thin films of NbN

    Full text link
    We report robust vortex matching effects in antidot arrays fabricated on thin films of NbN. The near absence of hysteresis between field sweep directions indicates a negligible residual pinning in the host thin film. Owing to the very small coherence length of NbN thin films (ξ<5nm\xi < 5 nm), the observations suggests the possibility of probing physics of vortices at true nanometer length scales in suitably fabricated structures.Comment: Submitted to Appl. Phys. Let

    A high-order finite volume method for Maxwell's equations in heterogeneous and time-varying media

    Full text link
    We develop a finite volume method for Maxwell's equations in materials whose electromagnetic properties vary in space and time. We investigate both conservative and non-conservative numerical formulations. High-order methods accurately resolve fine structures that develop due to the varying material properties. Numerical examples demonstrate the effectiveness of the proposed method in handling temporal variation and its efficiency relative to traditional 2nd-order FDTD.Comment: 15 pages, 8 figure

    Extension of the scaled boundary finite element method to treat implicitly defined interfaces without enrichment

    Full text link
    In this paper, the scaled boundary finite element method (SBFEM) is extended to solve the second order elliptic equation with discontinuous coefficients and to treat weak discontinuities. The salient feature of the proposed technique is that: (a) it requires only the boundary to be discretized and (b) does not require the interface to be discretized. The internal boundaries are represented implicitly by the level set method and the zero level sets are used to identify the different regions. In the regions containing the interface, edges along the boundary are assigned different material properties based on their location with respect to the zero level set. A detailed discussion is provided on the implementation aspects, followed by a few example problems in both two and three dimensions to show the robustness, accuracy and effectiveness of the proposed approach in modelling materials with interfaces. The proposed technique can easily be integrated to any existing finite element code

    Transcriptional profiles of Burkholderia pseudomallei reveal the direct and indirect roles of Sigma E under oxidative stress conditions

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: Burkholderia pseudomallei, the causative agent of melioidosis, is a Gram-negative bacterium widely distributed in soil and water in endemic areas. This soil saprophyte can survive harsh environmental conditions, even in soils where herbicides (containing superoxide generators) are abundant. Sigma factor E (σE) is a key regulator of extra-cytoplasmic stress response in Gram-negative bacteria. In this study, we identified the B. pseudomallei σE regulon and characterized the indirect role that σE plays in the regulation of spermidine, contributing to the successful survival of B. pseudomallei in stressful environments. RESULTS: Changes in the global transcriptional profiles of B. pseudomallei wild type and σE mutant under physiological and oxidative stress (hydrogen peroxide) conditions were determined. We identified 307 up-regulated genes under oxidative stress condition. Comparison of the transcriptional profiles of B. pseudomallei wild type and σE mutant under control or oxidative stress conditions identified 85 oxidative-responsive genes regulated by σE, including genes involved in cell membrane repair, maintenance of protein folding and oxidative stress response and potential virulence factors such as a type VI secretion system (T6SS). Importantly, we identified that the speG gene, encoding spermidine-acetyltransferase, is a novel member of the B. pseudomallei σE regulon. The expression of speG was regulated by σE, implying that σE plays an indirect role in the regulation of physiological level of spermidine to protect the bacteria during oxidative stress. CONCLUSION: This study identified B. pseudomallei genes directly regulated by σE in response to oxidative stress and revealed the indirect role of σE in the regulation of the polyamine spermidine (via regulation of speG) for bacterial cell protection during oxidative stress. This study provides new insights into the regulatory mechanisms by which σE contributes to the survival of B. pseudomallei under stressful conditions.This work was supported by the National Science and Technology Development Agency and Siriraj Grant for Research and Development. S. Jitprasutwit was supported by the Royal Golden Jubilee Ph. D. Program (PHD0270/2551)

    XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos

    Full text link
    A multi-target detection system XAX, comprising concentric 10 ton targets of 136Xe and 129/131Xe, together with a geometrically similar or larger target of liquid Ar, is described. Each is configured as a two-phase scintillation/ionization TPC detector, enhanced by a full 4pi array of ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing the conventional photomultipliers for detection of scintillation light. It is shown that background levels in XAX can be reduced to the level required for dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross section, with single-event sensitivity below 10^-11 pb. The use of multiple target elements allows for confirmation of the A^2 dependence of a coherent cross section, and the different Xe isotopes provide information on the spin-dependence of the dark matter interaction. The event rates observed by Xe and Ar would modulate annually with opposite phases from each other for WIMP mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of background reduction allow neutrinoless double beta decay to be observed with lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass range 0.01-0.1 eV, the most likely range from observed neutrino mass differences. The use of a 136Xe-depleted 129/131Xe target will also allow measurement of the pp solar neutrino spectrum to a precision of 1-2%.Comment: 16 pages with 17 figure

    Correlation Between Polymer Packing And Gas Transport Properties For Co2/N2 Separation In Glassy Fluorinated Polyimide Membrane

    Get PDF
    Gas separation performance of a membrane highly hinges on its physical properties. In this study, the interplay between polymer packing of a membrane and its gas transport behaviours (permeability and selectivity) was investigated through a series of 6FDA-DAM:DABA (3:2) polyimide membranes with different polymer compactness. The chemical structure and the polymer packing of the resulting membrane were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and packing density measurement, respectively. CO2/N2 separation efficiency of the membrane was evaluated at 25oC with feed pressure up to 6 bar. N2 permeability was found to rely on the membrane’s packing density, which signified its greater dependence on molecular sieving. In contrast, sorption showed a more vital role in determining the CO2 permeability. In this work, the membrane with a final thickness of 97±2 μm had successfully surpassed the Robeson’s 2008 upper bound plot with a CO2 permeability of 83 Barrer and CO2/N2 selectivity of 97 at 3 bar permeation
    corecore