2,951 research outputs found
Observation of Vortex Matching Phenomena in Antidot Array of NbN Thin Film
We report vortex matching phenomenon in rectangular antidot array fabricated
on epitaxial NbN thin film. The antidot array was fabricated using Focussed Ion
Beam milling technique. The magneto-transport measurements points to a period
doubling transition at higher magnetic field for rectangular lattices. The
results are discussed within the light of several models including the
multi-vortex model, the matched lattice model and the super-matched lattice
model.Comment: Added references, modified abstract and discussions and corrected
typo-graphic errors. Accepted for proceedings of M2S-IX 2009, Tokyo (Physica
C
Microcantilever Studies of Angular Field Dependence of Vortex Dynamics in BSCCO
Using a nanogram-sized single crystal of BSCCO attached to a microcantilever
we demonstrate in a direct way that in magnetic fields nearly parallel to the
{\it ab} plane the magnetic field penetrates the sample in the form of
Josephson vortices rather than in the form of a tilted vortex lattice. We
further investigate the relation between the Josephson vortices and the pancake
vortices generated by the perpendicular field component.Comment: 5 pages, 8 figure
Vortex matching effect in engineered thin films of NbN
We report robust vortex matching effects in antidot arrays fabricated on thin
films of NbN. The near absence of hysteresis between field sweep directions
indicates a negligible residual pinning in the host thin film. Owing to the
very small coherence length of NbN thin films (), the observations
suggests the possibility of probing physics of vortices at true nanometer
length scales in suitably fabricated structures.Comment: Submitted to Appl. Phys. Let
A high-order finite volume method for Maxwell's equations in heterogeneous and time-varying media
We develop a finite volume method for Maxwell's equations in materials whose
electromagnetic properties vary in space and time. We investigate both
conservative and non-conservative numerical formulations. High-order methods
accurately resolve fine structures that develop due to the varying material
properties. Numerical examples demonstrate the effectiveness of the proposed
method in handling temporal variation and its efficiency relative to
traditional 2nd-order FDTD.Comment: 15 pages, 8 figure
Extension of the scaled boundary finite element method to treat implicitly defined interfaces without enrichment
In this paper, the scaled boundary finite element method (SBFEM) is extended to solve the second order elliptic equation with discontinuous coefficients and to treat weak discontinuities. The salient feature of the proposed technique is that: (a) it requires only the boundary to be discretized and (b) does not require the interface to be discretized. The internal boundaries are represented implicitly by the level set method and the zero level sets are used to identify the different regions. In the regions containing the interface, edges along the boundary are assigned different material properties based on their location with respect to the zero level set. A detailed discussion is provided on the implementation aspects, followed by a few example problems in both two and three dimensions to show the robustness, accuracy and effectiveness of the proposed approach in modelling materials with interfaces. The proposed technique can easily be integrated to any existing finite element code
Transcriptional profiles of Burkholderia pseudomallei reveal the direct and indirect roles of Sigma E under oxidative stress conditions
This is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: Burkholderia pseudomallei, the causative agent of melioidosis, is a Gram-negative bacterium widely distributed in soil and water in endemic areas. This soil saprophyte can survive harsh environmental conditions, even in soils where herbicides (containing superoxide generators) are abundant. Sigma factor E (σE) is a key regulator of extra-cytoplasmic stress response in Gram-negative bacteria. In this study, we identified the B. pseudomallei σE regulon and characterized the indirect role that σE plays in the regulation of spermidine, contributing to the successful survival of B. pseudomallei in stressful environments. RESULTS: Changes in the global transcriptional profiles of B. pseudomallei wild type and σE mutant under physiological and oxidative stress (hydrogen peroxide) conditions were determined. We identified 307 up-regulated genes under oxidative stress condition. Comparison of the transcriptional profiles of B. pseudomallei wild type and σE mutant under control or oxidative stress conditions identified 85 oxidative-responsive genes regulated by σE, including genes involved in cell membrane repair, maintenance of protein folding and oxidative stress response and potential virulence factors such as a type VI secretion system (T6SS). Importantly, we identified that the speG gene, encoding spermidine-acetyltransferase, is a novel member of the B. pseudomallei σE regulon. The expression of speG was regulated by σE, implying that σE plays an indirect role in the regulation of physiological level of spermidine to protect the bacteria during oxidative stress. CONCLUSION: This study identified B. pseudomallei genes directly regulated by σE in response to oxidative stress and revealed the indirect role of σE in the regulation of the polyamine spermidine (via regulation of speG) for bacterial cell protection during oxidative stress. This study provides new insights into the regulatory mechanisms by which σE contributes to the survival of B. pseudomallei under stressful conditions.This work was supported by the National Science and Technology Development Agency and Siriraj Grant for Research and Development. S. Jitprasutwit was supported by the Royal Golden Jubilee Ph. D. Program (PHD0270/2551)
XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos
A multi-target detection system XAX, comprising concentric 10 ton targets of
136Xe and 129/131Xe, together with a geometrically similar or larger target of
liquid Ar, is described. Each is configured as a two-phase
scintillation/ionization TPC detector, enhanced by a full 4pi array of
ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing
the conventional photomultipliers for detection of scintillation light. It is
shown that background levels in XAX can be reduced to the level required for
dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross
section, with single-event sensitivity below 10^-11 pb. The use of multiple
target elements allows for confirmation of the A^2 dependence of a coherent
cross section, and the different Xe isotopes provide information on the
spin-dependence of the dark matter interaction. The event rates observed by Xe
and Ar would modulate annually with opposite phases from each other for WIMP
mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of
background reduction allow neutrinoless double beta decay to be observed with
lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass
range 0.01-0.1 eV, the most likely range from observed neutrino mass
differences. The use of a 136Xe-depleted 129/131Xe target will also allow
measurement of the pp solar neutrino spectrum to a precision of 1-2%.Comment: 16 pages with 17 figure
Correlation Between Polymer Packing And Gas Transport Properties For Co2/N2 Separation In Glassy Fluorinated Polyimide Membrane
Gas separation performance of a membrane highly hinges on its physical properties. In this study, the interplay between polymer packing of a membrane and its gas transport behaviours (permeability and selectivity) was investigated through a series of 6FDA-DAM:DABA (3:2) polyimide membranes with different polymer compactness. The chemical structure and the polymer packing of the resulting membrane were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and packing density measurement, respectively. CO2/N2 separation efficiency of the membrane was evaluated at 25oC with feed pressure up to 6 bar. N2 permeability was found to rely on the membrane’s packing density, which signified its greater dependence on molecular sieving. In contrast, sorption showed a more vital role in determining the CO2 permeability. In this work, the membrane with a final thickness of 97±2 μm had successfully surpassed the Robeson’s 2008 upper bound plot with a CO2 permeability of 83 Barrer and CO2/N2 selectivity of 97 at 3 bar permeation
- …